|
|
Zeile 199: |
Zeile 199: |
| |2= Lösung anzeigen|3=Lösung verbergen}} | | |2= Lösung anzeigen|3=Lösung verbergen}} |
| |3=Arbeitsmethode| Farbe={{Farbe|grün|dunkel}} }} | | |3=Arbeitsmethode| Farbe={{Farbe|grün|dunkel}} }} |
| | |
| | {{Fortsetzung|weiter=Wendepunkte|weiterlink=Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Wendepunkte|vorher=zurück|vorherlink=Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung}} |
Version vom 29. April 2020, 11:40 Uhr
Wissen
Im vorherigen Kapitel konntest du etwas über das Monotonie-Verhalten einer Funktion erfahren. Dieses Wissen wird nun weiter vertieft und du lernst die sogenannten Extremstellen kennen, die in einem starken Zusammenhang mit dem Monotonie-Verhalten stehen.
Eine Funktion , die in einem ersten Abschnitt streng monoton wächst und im darauf folgenden Abschnitt streng monoton fällt, muss einen Punkt besitzen an dem die Funktion weder steigt noch fällt und dieser Punkt wird als Maximum beziehungsweise Minimum bezeichnet.
Extrema werden bei einer Funktionsuntersuchung weitergehend darin unterschieden, ob es sich dabei um ein globales oder lokales Extremum handelt. Wichtig ist es dabei, dass du dein Intervall berücksichtigst.
- Es liegt ein lokales Extremum vor, wenn kein größerer oder kleinerer Funktionswert in einem betrachteten Intervall vorhanden ist.
- Ein globales Extremum liegt vor, wenn kein größerer oder kleinerer Funktionswert des gesamten Graphen existiert.
Merke: Die globalen Extremstellen sind besonders dann wichtig für dich, wenn du die Randwerte überprüfen sollst.
Die nachfolgende Übung soll Dir dabei den Unterschied verdeutlichen!
Aufgabe 1 - Extrema zuordnen
Ordne die Fachbegriffe den passenden Punkten der Funktion zu.
Nach dem du jetzt weißt was Extrema sind, sollst du erfahren, wie du diese schrittweise bestimmen kannst.
Die folgende Übersicht soll dir dabei helfen, die Kriterien der verschiedenen Extremstellen besser merken zu können:
Art der Extremstelle
|
Notwendiges Kriterium
|
Hinreichendes Kriterium
|
Hochpunkt
|
|
und <
|
Tiefpunkt
|
|
und >
|
Sattelpunkt
|
und
|
|
Beispiel: Bestimmung von Extremstellen
In den beiden nachfolgenden Aufgaben kannst du dein Wissen nun überprüfen. In der 1. Aufgabe werden deine mathematischen Fähigkeiten unter Probe gestellt, um anschließend in Aufgabe 2 herausfinden zu können, ob du deine Ergebnisse auch im Sachzusammenhang interpretieren kannst.
Aufgabe 2 - Extrema bestimmen
Berechne die Extremstellen der folgenden Aufgabe. Jede Funktion besitzt einen unterschiedlich hohen Schwierigkeitsgrad. Wenn du dir noch nicht so sicher bist bei der Bestimmunng von Extremstellen, so solltest du die erste Aufgabe erarbeiten. Fühlst du dich jedoch gut vorbereitet und bist der Meinung du kannst auch komplexere Funktionen auf Extremstellen untersuchen. Dann versuche dein Können an der dritten Aufgabe.
- a)
- b)
- c) mit
Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:
- Notwendiges Kriterium
- , mit .
- Durch Umformungen erhalten wir die möglichen Extremstellen:
- Ausklammern
- Satz vom Nullprodukt
. und
- Hinreichendes Kriterium
- oder , mit .
- Wir erhalten durch einsetzen:
- Es handelt sich um einen Hochpunkt bei
- Es handelt sich um einen möglichen Sattelpunkt bei Dies muss überprüft werden!
- Es handelt sich um einen Tiefpunkt bei
- Achtung: Ob es sich um eine Sattelstelle bei handelt, wird durch die dritte Ableitung überprüft, indem wir zeigen, dass stimmt. Es gilt
- Es liegt ein Sattelpunkt vor.
- Ordinate bestimmen
- Wir setzen unsere Extremstelle in die Ursprungsfunktion ein:
- HP
- SP
- TP
Aufgabe 3 - Anwendungsaufgabe
Die Anzahl der Kunden eines Shopping-Centers wird für mit Hilfe der Funktion modelliert. Die Variable stellt dabei die Zeit in Stunden dar.
- a) Bestimme die Uhrzeit, an der die Anzahl der Kunden am größten ist. Wie viele Besucher halten sich zu dieser Zeit im Shopping-Center auf?
- Antwortsatz
- Um 15:07 Uhr besuchen die meisten Kunden das Shopping Center. Insgesamt sind es 376 Personen.
- Ableitungen bestimmen:
- Notwendiges Kriterium:
-
- . Hier ist nur der zweite Wert von Relevanz, da der erste außerhalb des Definitionsbereiches liegt.
- Hinreichendes Kriterium:
- Es liegt ein Hochpunkt vor.
- Ordinate bestimmen:
- Dieser Wert wird aufgerundet!
- b) Berechne und beschreibe was dieser Wert im Sachzusammenhang bedeutet.
Die Ableitungsfunktion beschreibt die Anzahl der Kunden, die zu der Uhrzeit
das Shopping-Center betreten oder verlassen. Der Wert 67 bedeutet im Sachzusammenhang, dass um 12 Uhr 67 neue Kunden das Shopping-Center betreten.
- c) Um 10 Uhr betritt eine bestimmte Anzahl an Kunden das Shopping-Center. Berechne den Zeitpunkt an dem genauso viele Kunden das Center verlassen, wie sie es um 10 Uhr betreten haben.
Überlege Dir, wie die Zunahme und Abnahme von Kunden mathematisch betrachtet werden kann. Erinnere dich daran, dass man von einer positiven Zunahme spricht.
Bestimme die Anzahl neuer Kunden um 10 Uhr:
Hier muss ein Vorzeichenwechsel stattfinden, denn die Zunahme von Kunden bedeutet im mathematischen Sinne eine positive Zunahme. Da nach einer Uhrzeit gesucht, bei der Kunden das Shopping-Center verlassen, muss aus +95 -95 werden.
Bestimme die Uhrzeit zu der 95 Kunden das Shopping-Center verlassen:
Antwortsatz: Um 18:10 verlassen 95 Kunden das Shopping-Center.