Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Lara (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Lara (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 175: | Zeile 175: | ||
|2 = Tipp 1|3 = Tipp 1}} | |2 = Tipp 1|3 = Tipp 1}} | ||
{{Lösung versteckt| 1 = Gesucht ist das <math>t</math>, für das der Funktionswert maximal ist, also das Maximum der Funktion <math>g(t)</math>. | |||
|2 = Tipp 2|3 = Tipp 3}} | |||
{{Lösung versteckt|1 = Prüfe die hinreichende Bedingung: <math>g'(t)=0</math> und <math>g''(t)<0</math>. | |||
|2 = Tipp 3| 3 = Tipp 3}} | |||
Version vom 28. April 2020, 09:08 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Extremwertproblemen
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen
Die zu optimierende Größe ist der Funktionswert am Tiefpunkt der Funktion.
Berechne also zunächst den Tiefpunkt der Funktion in Abhängigkeit von t.
Ableiten der Funktion ergibt:
Für ein Minimum muss gelten: und .
Minimum
Setze nun in ein, um den Funktionswert am Minimum zu bestimmen:
Bezeichnen wir den Funktionswert am Tiefpunkt mit einer neuen Gleichung , so ergibt sich also:
Die zu optimierende Größe ist der Funktionswert am Tiefpunkt der Funktion.
Berechne also zunächst den Tiefpunkt der Funktion in Abhängigkeit von t:
Ableiten der Funktion ergibt:
Für ein Minimum muss gelten: und .
Minimum
Setze nun in ein, um den Funktionswert am Minimum zu bestimmen:
Bezeichnen wir den Funktionswert am Tiefpunkt mit einer neuen Gleichung , so ergibt sich also:
.
Gesucht ist das , für das der Funktionswert maximal ist, also das Maximum der Funktion .
Bilde zunächst wieder die Ableitungen und :
Bei einem Maximum muss gelten: und .
Maximum
Der Funktionswert des Tiefpunktes ist also für maximal.