Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Lara (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Lara (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 138: | Zeile 138: | ||
Berechne also zunächst den Tiefpunkt der Funktion in Abhängigkeit von t. | Berechne also zunächst den Tiefpunkt der Funktion in Abhängigkeit von t. | ||
|2 = Tipp 1|3 = | {{Lösung versteckt|1 = Ableiten der Funktion ergibt: | ||
<math>f'(x)=2x-4</math> | |||
<math>f''(x)= 2</math> | |||
Für ein Minimum muss gelten: <math>f'(x)=0</math> und <math>f''(x)>0</math>. | |||
<math> f'(x)=0</math> | |||
<math><=> 2x-4=0 </math> | |||
<math><=> 2x=4</math> | |||
<math><=> x=2</math> | |||
<math>f''(2) = 2 > 0 =></math> Minimum | |||
Setze nun <math>x=2</math> in <math>f(x)</math> ein, um den Funktionswert am Minimum zu bestimmen: | |||
<math>f(2)=2^2-4*2-t^2-2t</math> | |||
<math><=> f(2)=4-8-t^2-2t</math> | |||
<math><=> f(2)=-4-t^2-2t</math> | |||
Bezeichnen wir den Funktionswert am Tiefpunkt mit einer neuen Gleichung <math>g</math>, so ergibt sich also: | |||
<math> g(t)=-4-t^2-2t</math>. | |||
|2 = Lösung | 3 = Lösung}} | |||
|2 = Tipp 1|3 = Tipp 1}} | |||
Zeile 202: | Zeile 238: | ||
Der Funktionswert des Tiefpunktes ist also für <math>t=-1</math> maximal. | Der Funktionswert des Tiefpunktes ist also für <math>t=-1</math> maximal. | ||
|2 = | |2 = Gesamtlösung|3 = Gesamtlösung}} |
Version vom 28. April 2020, 09:04 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Extremwertproblemen
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen
Die zu optimierende Größe ist der Funktionswert am Tiefpunkt der Funktion.
Berechne also zunächst den Tiefpunkt der Funktion in Abhängigkeit von t.
Ableiten der Funktion ergibt:
Für ein Minimum muss gelten: und .
Minimum
Setze nun in ein, um den Funktionswert am Minimum zu bestimmen:
Bezeichnen wir den Funktionswert am Tiefpunkt mit einer neuen Gleichung , so ergibt sich also:
Die zu optimierende Größe ist der Funktionswert am Tiefpunkt der Funktion.
Berechne also zunächst den Tiefpunkt der Funktion in Abhängigkeit von t:
Ableiten der Funktion ergibt:
Für ein Minimum muss gelten: und .
Minimum
Setze nun in ein, um den Funktionswert am Minimum zu bestimmen:
Bezeichnen wir den Funktionswert am Tiefpunkt mit einer neuen Gleichung , so ergibt sich also:
.
Gesucht ist das , für das der Funktionswert maximal ist, also das Maximum der Funktion .
Bilde zunächst wieder die Ableitungen und :
Bei einem Maximum muss gelten: und .
Maximum
Der Funktionswert des Tiefpunktes ist also für maximal.