Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Verhalten im Unendlichen und nahe Null: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Basiswissen Analysis | Eigenschaften von Funktionen und Funktionsuntersuchung
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 36: | Zeile 36: | ||
Das '''Verhalten einer Funktion <math>f</math> nahe Null''' beschreibt, wie sich der Funktionswert <math>f(x)</math> verhält, wenn <math>x</math> gegen Null geht, also für sehr kleine Werte von <math>x</math>. Eine ganzrationale Funktion der Form <math>f(x)=a_n x^n+a_{n-1}x^{n-1}+\ldots+a_1 x+a_0</math> verhält sich nahe Null wie die Summe aus dem absoluten Glied <math>a_0</math> und dem Summanden mit der geringsten Potenz von x, die im Funktionsterm auftaucht. | Das '''Verhalten einer Funktion <math>f</math> nahe Null''' beschreibt, wie sich der Funktionswert <math>f(x)</math> verhält, wenn <math>x</math> gegen Null geht, also für sehr kleine Werte von <math>x</math>. Eine ganzrationale Funktion der Form <math>f(x)=a_n x^n+a_{n-1}x^{n-1}+\ldots+a_1 x+a_0</math> verhält sich nahe Null wie die Summe aus dem absoluten Glied <math>a_0</math> und dem Summanden mit der geringsten Potenz von x, die im Funktionsterm auftaucht. | ||
| Merksatz}} | | Merksatz}} | ||
{{Box | 1=<span style="color: orange">Aufgabe 1 - Quiz zum Verhalten im Unendlichen</span> | | |||
2=Öffne das Quiz im Vollbildmodus und wähle die jeweils richtigen Antworten aus. Es können eine oder mehrere Antworten richtig sein. Es kann helfen, dir Notizen zu machen. | |||
{{LearningApp|width:80%|height:1000px|app=10633191}} | |||
| 3=Arbeitsmethode}} | |||
{{Box| Beispiel 1| | {{Box| Beispiel 1| | ||
Zeile 44: | Zeile 49: | ||
<math>f(x)=x^5+4x^2-7</math> verhält sich im Unendlichen wie <math>g(x)=x^5</math>. Für <math>x\rightarrow -\infty</math> geht <math>f(x)\rightarrow -\infty</math> und für <math>x\rightarrow \infty</math> geht <math>f(x)\rightarrow\infty</math>, da <math>n=5</math> eine ungerade Zahl ist und <math>a_n=1>0</math> . Nahe Null verhält sich <math>f</math> wie <math>h(x)=4x^2-7</math>, also wie eine um den Faktor 4 gestreckte, nach oben geöffnete Parabel mit dem Scheitelpunkt (und y-Achsenabschnitt) bei <math>(0,-7)</math>. | <math>f(x)=x^5+4x^2-7</math> verhält sich im Unendlichen wie <math>g(x)=x^5</math>. Für <math>x\rightarrow -\infty</math> geht <math>f(x)\rightarrow -\infty</math> und für <math>x\rightarrow \infty</math> geht <math>f(x)\rightarrow\infty</math>, da <math>n=5</math> eine ungerade Zahl ist und <math>a_n=1>0</math> . Nahe Null verhält sich <math>f</math> wie <math>h(x)=4x^2-7</math>, also wie eine um den Faktor 4 gestreckte, nach oben geöffnete Parabel mit dem Scheitelpunkt (und y-Achsenabschnitt) bei <math>(0,-7)</math>. | ||
| Beispiel}} | | Beispiel}} | ||
{{Box | 1=<span style="color: blue">Aufgabe 2 - Beschreibe das Verhalten</span> | | {{Box | 1=<span style="color: blue">Aufgabe 2 - Beschreibe das Verhalten</span> | |