Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Lineare Funktionen: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 65: | Zeile 65: | ||
{{Lösung versteckt|1= Andere Funktionstypen: Alle Graphen, bei denen die <math>x</math>-Werte jeweils nur einmal getroffen werden, aber keine Gerade darstellen und alle Funktionsgleichungen bei denen die unabhängige Variabel einen Exponenten hat der größer als <math>1</math> ist, sind Funktionen aber sie sind nicht linear.|2= Lösung - Andere Funktionstypen|3= Lösung - Andere Funktionstypen}} |Arbeitsmethode}} | {{Lösung versteckt|1= Andere Funktionstypen: Alle Graphen, bei denen die <math>x</math>-Werte jeweils nur einmal getroffen werden, aber keine Gerade darstellen und alle Funktionsgleichungen bei denen die unabhängige Variabel einen Exponenten hat der größer als <math>1</math> ist, sind Funktionen aber sie sind nicht linear.|2= Lösung - Andere Funktionstypen|3= Lösung - Andere Funktionstypen}} |Arbeitsmethode}} | ||
===Lineare Funktionen - Bestimmung | ===Lineare Funktionen - Bestimmung von Geradengleichungen=== | ||
{{Box|1 = Aufgabe 3: Eine Geradengleichung mithilfe von einem Punkt und der Steigung bestimmen*|2 = Gegeben | {{Box|1 = Aufgabe 3: Eine Geradengleichung mithilfe von einem Punkt und der Steigung bestimmen*|2 = | ||
Gegeben seien stets die Steigung der Geraden und ein Punkt, durch den die Gerade verläuft. Bestimme in deinem Heft die jeweiligen Gleichungen der Geraden in der Form <math>f(x) = mx + b</math>. | |||
'''a)'''Gegeben sei die Steigung <math>m = 3,5</math> und der Punkt <math>P(2/5)</math>. | |||
{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + b</math> ein.|2=Tipp|3=Tipp}} | {{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + b</math> ein.|2=Tipp|3=Tipp}} | ||
{{Lösung versteckt|1 = Setze zunächst für die Steigung <math>m = 3,5</math>, sodass dein erstes Gerüst <math>f(x) = 3,5x + b</math> entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes <math>P(2/5)</math>, sodass du mit <math>x = 2</math> und <math>f(x) = 5</math> die Gleichung <math>5 = 3,5\cdot2 + b</math> erhältst. Bestimme nun mit Auflösung nach <math>b</math> den Wert <math>b = -2</math>, sodass sich schließlich die Geradengleichung <math>f(x) = 3,5x - 2</math> ergibt.|2 = Lösung|3 = Lösung | {{Lösung versteckt|1 = Setze zunächst für die Steigung <math>m = 3,5</math>, sodass dein erstes Gerüst <math>f(x) = 3,5x + b</math> entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes <math>P(2/5)</math>, sodass du mit <math>x = 2</math> und <math>f(x) = 5</math> die Gleichung <math>5 = 3,5\cdot2 + b</math> erhältst. Bestimme nun mit Auflösung nach <math>b</math> den Wert <math>b = -2</math>, sodass sich schließlich die Geradengleichung <math>f(x) = 3,5x - 2</math> ergibt.|2 = Lösung|3 = Lösung}} | ||
{{ | '''b)'''Gegeben sei die Steigung <math>m = -4</math> und der Punkt <math>P(-7/-1)</math>. | ||
{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + b</math> ein.|2=Tipp|3=Tipp}} | |||
{{Lösung versteckt|1 = Setze zunächst für die Steigung <math>m = -4</math>, sodass dein erstes Gerüst <math>f(x) = -4x + b</math> entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes <math>P(-7/-1)</math>, sodass du mit <math>x = -7</math> und <math>f(x) = -1</math> die Gleichung <math>-1 = -4\cdot(-7) + b</math> erhältst. Bestimme nun mit Auflösung nach <math>b</math> den Wert <math>b = 27</math>, sodass sich schließlich die Geradengleichung <math>f(x) = -4x + 27</math> ergibt.|2 = Lösung|3 = Lösung}} | |||
'''c)'''Gegeben sei die Steigung <math>m = \frac{5}{8}</math> und der Punkt <math>P(-\frac{2}{7}/\frac{3}{4})</math>. | |||
{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + b</math> ein.|2=Tipp|3=Tipp}} | |||
{{Lösung versteckt|1 = Setze zunächst für die Steigung <math>m = \frac{5}{8}</math>, sodass dein erstes Gerüst <math>f(x) = \frac{5}{8}x + b</math> entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes <math>P(-\frac{2}{7}/\frac{3}{4})</math>, sodass du mit <math>x = -\frac{2}{7}</math> und <math>f(x) = \frac{3}{4})</math> die Gleichung <math>\frac{3}{4}) = \frac{5}{8}\cdot(-\frac{2}{7}) + b</math> erhältst. Bestimme nun mit Auflösung nach <math>b</math> den Wert <math>b = \frac{52}{56} = \frac{13}{14}</math>, sodass sich schließlich die Geradengleichung <math>f(x) = \frac{5}{8}x + \frac{13}{14}</math> ergibt.|2 = Lösung|3 = Lösung}}|3=Arbeitsmethode}} | |||
{{Box|1=Aufgabe 4: Eine Geradengleichung mithilfe von zwei Punkten bestimmen*|2= Gegeben seien stets zwei Punkte, durch die eine Gerade verläuft. Bestimme in deinem Heft die jeweiligen Gleichungen der Geraden in der Form <math>f(x) = mx + b</math>. | |||
'''a)''' Gegeben seien die Punkte <math>P(3/-4)</math> und <math>Q(8/6)</math>. | |||
{{Lösung versteckt|1=Bestimme die Steigung der Geraden mithilfe der Punkte <math>P</math> und <math>Q</math>, indem du rechnest: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{6 + 4}{8 - 3} = 2</math>. Wenn du Schwierigkeiten dabei hast, dir dieses Vorgehen zu erklären, stell dir vor, dass du an den Punkten <math>P</math> und <math>Q</math> des Graphen ein Steigungsdreieck zeichnest. Dann entspricht der Zähler der obigen Rechnung genau der Länge des y-Achsenabschnitts deines Steigungsdreiecks und der Nenner der obigen Rechnung der Länge des x-Achsenabschnitts deines Steigungsdreiecks. | {{Lösung versteckt|1=Bestimme die Steigung der Geraden mithilfe der Punkte <math>P</math> und <math>Q</math>, indem du rechnest: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{6 + 4}{8 - 3} = 2</math>. Wenn du Schwierigkeiten dabei hast, dir dieses Vorgehen zu erklären, stell dir vor, dass du an den Punkten <math>P</math> und <math>Q</math> des Graphen ein Steigungsdreieck zeichnest. Dann entspricht der Zähler der obigen Rechnung genau der Länge des y-Achsenabschnitts deines Steigungsdreiecks und der Nenner der obigen Rechnung der Länge des x-Achsenabschnitts deines Steigungsdreiecks. | ||
Zeile 82: | Zeile 98: | ||
{{Lösung versteckt|1 = Wenn du nach der ersten Variante vorgehen möchtest, also erst die Steigung <math>m</math> und dann mithilfe eines der beiden Punkte <math>b</math> bestimmen möchtest, dann ergibt sich zunächst für die Steigung: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{6 + 4}{8 - 3} = 2</math>. Im Anschluss erhältst du durch Einsetzen des Punktes <math>P</math> oder <math>Q</math> entweder <math>-4 = 2 \cdot 3 + b</math> oder <math>6 = 2 \cdot 8 + b</math>. Die Auflösung einer der beiden Gleichungen nach <math>b</math> liefert <math>b = -10</math>, sodass du schließlich die Funktionsgleichung <math>f(x) = 2x - 10</math> erhältst. | {{Lösung versteckt|1 = Wenn du nach der ersten Variante vorgehen möchtest, also erst die Steigung <math>m</math> und dann mithilfe eines der beiden Punkte <math>b</math> bestimmen möchtest, dann ergibt sich zunächst für die Steigung: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{6 + 4}{8 - 3} = 2</math>. Im Anschluss erhältst du durch Einsetzen des Punktes <math>P</math> oder <math>Q</math> entweder <math>-4 = 2 \cdot 3 + b</math> oder <math>6 = 2 \cdot 8 + b</math>. Die Auflösung einer der beiden Gleichungen nach <math>b</math> liefert <math>b = -10</math>, sodass du schließlich die Funktionsgleichung <math>f(x) = 2x - 10</math> erhältst. | ||
Wenn du nach der zweiten Variante vorgehen möchtest, stellst du mithilfe der beiden Punkte <math>P</math> und <math>Q</math> ein lineares Gleichungssystem zweier Gleichungen, jeweils mit den beiden Unbekannten <math>m</math> und <math>b</math> auf. Dann erhältst du die beiden Gleichungen <math>-4 = m \cdot 3 + b</math> und <math>6 = m \cdot 8 + b</math>. Ziehe nun die Gleichungen voneinander ab, sodass du <math>b</math> eliminieren kannst. Bestimme nun mithilfe der Auflösung nach <math>m</math> die Unbekannte <math>m = 2</math>. Setze nun ein eine der beiden Gleichungen dein Ergebnis für <math>m</math> ein und bestimme dann mithilfe der Auflösung nach <math>b</math> die Unbekannte <math>b = -10</math>. Damit erhältst du schließlich die Funktionsgleichung <math>f(x) = 2x - 10</math>.|2 = Lösung|3 = Lösung}}|3=Arbeitsmethode}} | Wenn du nach der zweiten Variante vorgehen möchtest, stellst du mithilfe der beiden Punkte <math>P</math> und <math>Q</math> ein lineares Gleichungssystem zweier Gleichungen, jeweils mit den beiden Unbekannten <math>m</math> und <math>b</math> auf. Dann erhältst du die beiden Gleichungen <math>-4 = m \cdot 3 + b</math> und <math>6 = m \cdot 8 + b</math>. Ziehe nun die Gleichungen voneinander ab, sodass du <math>b</math> eliminieren kannst. Bestimme nun mithilfe der Auflösung nach <math>m</math> die Unbekannte <math>m = 2</math>. Setze nun ein eine der beiden Gleichungen dein Ergebnis für <math>m</math> ein und bestimme dann mithilfe der Auflösung nach <math>b</math> die Unbekannte <math>b = -10</math>. Damit erhältst du schließlich die Funktionsgleichung <math>f(x) = 2x - 10</math>.|2 = Lösung|3 = Lösung}} | ||
'''b)''' Gegeben seien die Punkte <math>P(-7/4)</math> und <math>Q(11/-3)</math>. | |||
{{Lösung versteckt|1=Bestimme die Steigung der Geraden mithilfe der Punkte <math>P</math> und <math>Q</math>, indem du rechnest: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{(-3) - 4}{11 - (-7)} = \frac{-7}{18}</math>. Wenn du Schwierigkeiten dabei hast, dir dieses Vorgehen zu erklären, stell dir vor, dass du an den Punkten <math>P</math> und <math>Q</math> des Graphen ein Steigungsdreieck zeichnest. Dann entspricht der Zähler der obigen Rechnung genau der Länge des y-Achsenabschnitts deines Steigungsdreiecks und der Nenner der obigen Rechnung der Länge des x-Achsenabschnitts deines Steigungsdreiecks. | |||
Alternativ kannst du auch zwei Gleichungen erstellen, indem du die Angaben der Punkte <math>P(-7/4)</math>, d.h. <math>x = -7</math> und <math>f(x) = 4</math>, und <math>Q(11/-3)</math>, d.h. <math>x = 11</math> und <math>f(x) = -3</math> nutzt.|2=Tipp 1|3=Tipp 1}} | |||
{{Lösung versteckt|1=Wenn du nach der ersten Variante vorgegangen bist, also die Steigung berechnet hast, dann wähle nun einen der beiden Punkte <math>P</math> oder <math>Q</math> und setze in <math>f(x) = \frac{-7}{18}x + b</math> die zugehörigen Werte für <math>x</math> und <math>f(x)</math> ein. | |||
Wenn du nach der zweiten Variante vorgegangen bist, also zwei Gleichungen, jeweils mit den Unbekannten <math>m</math> und <math>b</math> aufgestellt hast, dann hast du ein lineares Gleichungssystem erhalten. Nun kannst du mithilfe des Eliminationsverfahrens zunächst die eine und dann die andere Unbekannte bestimmen.|2=Tipp 2|3=Tipp 2}} | |||
{{Lösung versteckt|1 = Wenn du nach der ersten Variante vorgehen möchtest, also erst die Steigung <math>m</math> und dann mithilfe eines der beiden Punkte <math>b</math> bestimmen möchtest, dann ergibt sich zunächst für die Steigung: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{(-3) - 4}{11 - (-7)} = \frac{-7}{18}</math>. Im Anschluss erhältst du durch Einsetzen des Punktes <math>P</math> oder <math>Q</math> entweder <math> 4 = \frac{-7}{18} \cdot (-7) + b</math> oder <math>-3 = \frac{-7}{18} \cdot 11 + b</math>. Die Auflösung einer der beiden Gleichungen nach <math>b</math> liefert <math>b = \frac{23}{18} </math>, sodass du schließlich die Funktionsgleichung <math>f(x) = \frac{-7}{18}x + \frac{23}{18}</math> erhältst. | |||
Wenn du nach der zweiten Variante vorgehen möchtest, stellst du mithilfe der beiden Punkte <math>P</math> und <math>Q</math> ein lineares Gleichungssystem zweier Gleichungen, jeweils mit den beiden Unbekannten <math>m</math> und <math>b</math> auf. Dann erhältst du die beiden Gleichungen <math>4 = m \cdot (-7) + b</math> und <math>-3 = m \cdot 11 + b</math>. Ziehe nun die Gleichungen voneinander ab, sodass du <math>b</math> eliminieren kannst. Bestimme nun mithilfe der Auflösung nach <math>m</math> die Unbekannte <math>m = \frac{-7}{18}</math>. Setze nun ein eine der beiden Gleichungen dein Ergebnis für <math>m</math> ein und bestimme dann mithilfe der Auflösung nach <math>b</math> die Unbekannte <math>b = \frac{23}{18}</math>. Damit erhältst du schließlich die Funktionsgleichung <math>f(x) = \frac{-7}{18}x + \frac{23}{18}</math>.|2 = Lösung|3 = Lösung}}|3=Arbeitsmethode}} | |||
===Prüfen, ob Punkte auf einer Geraden liegen=== | ===Prüfen, ob Punkte auf einer Geraden liegen=== |
Version vom 28. Mai 2019, 13:41 Uhr
Lineare Funktionen - ein Überblick
Lineare Funktionen erkennen
Lineare Funktionen - Bestimmung von Geradengleichungen
Prüfen, ob Punkte auf einer Geraden liegen
Eine lineare Gleichung einer Geraden zuordnen
Den Schnittpunkt zweier Geraden bestimmen
Lineare Funktionen im Anwendungskontext