Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Lineare Funktionen: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
===Lineare Funktionen - ein Überblick=== | ===Lineare Funktionen - ein Überblick=== | ||
{{Box|Nice to know!| | {{Box|Aufgabe 1: Nice to know!|Beantworte die Fragen zu linearen Funktionen. Es können auch mehrere Antworten möglich sein.|Arbeitsmethode | ||
}} | }} | ||
<iframe src="https://learningapps.org/watch?v=ptvafj8jc19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | <iframe src="https://learningapps.org/watch?v=ptvafj8jc19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
Zeile 13: | Zeile 13: | ||
#Die Steigung ist der Vorfaktor vom x. Die Steigung beschreibt um wie viel der y-Wert nach oben (unten bei negativen Vorzeichen) verschoben werden muss, wenn man den x-Wert um einen erhöht. | #Die Steigung ist der Vorfaktor vom x. Die Steigung beschreibt um wie viel der y-Wert nach oben (unten bei negativen Vorzeichen) verschoben werden muss, wenn man den x-Wert um einen erhöht. | ||
#Den Schnittpunkt zweier Funktionen erhält man durch Gleichsetzten die beiden Funktionsgleichungen. | #Den Schnittpunkt zweier Funktionen erhält man durch Gleichsetzten die beiden Funktionsgleichungen. | ||
===Lineare Funktionen erkennen=== | |||
{{Box|Aufgabe 2: Erkennst du sie?|Überlege ob die folgenden Funktionsgleichungen und Graphen lineare Funktionen sind und ordne sie dem entsprechenden Feld zu.|Arbeitsmethode}} | |||
<iframe src="https://learningapps.org/watch?v=px8y1m7tj19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> |
Version vom 14. April 2019, 09:56 Uhr
Lineare Funktionen - ein Überblick
- Eine lineare Funktion ist eine Gerade, sie hat keine Kurven.
- Auch eine Funktion mit nur einer Zahl ( eine sogenannte Konstante) ist eine Gerade und demnach eine lineare Funktion.
- Grundsätzlich wird einem x-Wert immer nur ein y-Wert zugeordnet.
- Bei linearen Funktionen kann ein y-Wert immer nur von einem x-Wert getroffen werden, außer die Funktion ist eine Konstante. Dies ist bei anderen Funktionenarten nicht so!
- Der y-Achsenabschnitt ist bei linearen Funktionen immer der Wert ohne das x.
- Den x-Achsenabschnitt (die Nullstelle) berechnet man indem man die Funktion gleich 0 setzt.
- Die Steigung ist der Vorfaktor vom x. Die Steigung beschreibt um wie viel der y-Wert nach oben (unten bei negativen Vorzeichen) verschoben werden muss, wenn man den x-Wert um einen erhöht.
- Den Schnittpunkt zweier Funktionen erhält man durch Gleichsetzten die beiden Funktionsgleichungen.
Lineare Funktionen erkennen