Benutzer:Buss-Haskert/Quadratische Funktionen/Scheitelpunktform: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 10: | Zeile 10: | ||
[[Benutzer:Buss-Haskert/Quadratische Funktionen/Normalform|6 Die Normalform f(x) = x² + px + q und die allgemeine Form quadratischer Funktionen f(x) = ax² + bx + c]]<br> | [[Benutzer:Buss-Haskert/Quadratische Funktionen/Normalform|6 Die Normalform f(x) = x² + px + q und die allgemeine Form quadratischer Funktionen f(x) = ax² + bx + c]]<br> | ||
[[Benutzer:Buss-Haskert/Quadratische Funktionen/Nullstellen|7 Nullstellen quadratischer Funktionen]]<br> | [[Benutzer:Buss-Haskert/Quadratische Funktionen/Nullstellen|7 Nullstellen quadratischer Funktionen]]<br> | ||
[[Benutzer:Buss-Haskert/Quadratische Funktionen/Modellieren|8 Modellieren (Anwendungsaufgaben)]] | [[Benutzer:Buss-Haskert/Quadratische Funktionen/Modellieren|8 Modellieren (Anwendungsaufgaben)]]}} | ||
===5 Scheitelpunktform quadratischer Funktionen=== | ===5 Scheitelpunktform quadratischer Funktionen=== | ||
Version vom 9. März 2022, 23:15 Uhr
SEITE IM AUFBAU
1 Quadratische Funktionen entdecken
2 Die Normalparabel f(x) = x²
3 Die gestreckte und gestauchte Parabel: Bedeutung des Parameters a in f(x) = ax²
4 Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c
5 Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)² + e
6 Die Normalform f(x) = x² + px + q und die allgemeine Form quadratischer Funktionen f(x) = ax² + bx + c
7 Nullstellen quadratischer Funktionen
5 Scheitelpunktform quadratischer Funktionen
Applet von Hans-Jürgen Elschenbroich
Applets von Wolfgang Wengler
Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle:
Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben. Das Video erklärt dies noch einmal anschaulich.
Appelt von Wolfgang Wengler