Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 298: | Zeile 298: | ||
{{Lösung versteckt|1= Mit dem Normalenvektor <math>\vec{n}=\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}</math> ergibt sich für die Koordinatengleichung der Ansatz: <math>E\colon 2x_1-x_2+5x_3=d</math> mit <math>d=\vec{OP} \cdot \vec{n}</math>. | {{Lösung versteckt|1= Mit dem Normalenvektor <math>\vec{n}=\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}</math> ergibt sich für die Koordinatengleichung der Ansatz: <math>E\colon 2x_1-x_2+5x_3=d</math> mit <math>d=\vec{OP} \cdot \vec{n}</math>. | ||
Das heißt | Das heißt um <math>d</math> zu bestimmen, berechnet man das Skalarprodukt von <math>\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}</math> mit <math>\vec{OP}=\begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}</math> und erhält <math>d=22</math>. | ||
Lösung: <math>E\colon 2x_1+x_2+5x_3=22</math> | Lösung: <math>E\colon 2x_1+x_2+5x_3=22</math> | ||
|2=mögliche Lösung anzeigen|3=mögliche Lösung verbergen}} | |2=mögliche Lösung anzeigen|3=mögliche Lösung verbergen}} | ||
Zeile 364: | Zeile 364: | ||
& & 6 \cdot ({-}30) - 7 \cdot 20+392z &= 504 & & \\ | & & 6 \cdot ({-}30) - 7 \cdot 20+392z &= 504 & & \\ | ||
\Leftrightarrow & & {-}320+392z &= 504 & &\mid +320\\ | \Leftrightarrow & & {-}320+392z &= 504 & &\mid +320\\ | ||
\Leftrightarrow & & 392z &= 824. & &\mid :392 | \Leftrightarrow & & 392z &= 824. & &\mid :392\\ | ||
\Leftrightarrow & & z & | \Leftrightarrow & & z &\approx 2{,}1020 | ||
\end{align}</math></div> | \end{align}</math></div> | ||
Zeile 373: | Zeile 373: | ||
{{Box | ⭐Aufgabe 14: Schattenwurf (Gerade und Ebene in Koordinatenform) |Ein Baum mit dem Fußpunkt <math>F({-}2|1|0)</math> und der Spitze <math>S({-}2|1|15)</math> wird von der Sonne bestrahlt, deren Sonnenstrahlen parallel zum Vektor <math>\begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}</math> verlaufen. Der Baum wirft einen Schatten auf einen Hang, der durch die Ebene <math>E\colon x_1+2x_2+x_3={-}6</math> beschrieben wird. | {{Box | ⭐Aufgabe 14: Schattenwurf (Gerade und Ebene in Koordinatenform) |Ein Baum mit dem Fußpunkt <math>F({-}2|1|0)</math> und der Spitze <math>S({-}2|1|15)</math> wird von der Sonne bestrahlt, deren Sonnenstrahlen parallel zum Vektor <math>\begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}</math> verlaufen. Der Baum wirft einen Schatten auf einen Hang, der durch die Ebene <math>E\colon x_1+2x_2+x_3={-}6</math> beschrieben wird. | ||
Wo liegt der Schattenpunkt <math>T</math> der Baumspitze <math>S</math> auf dem Hang und wie lang ist der Schatten des Baumes? | Wo liegt der Schattenpunkt <math>T</math> der Baumspitze <math>S</math> auf dem Hang und wie lang ist der Schatten des Baumes? (Das Ergebnis kann in Metern angegeben werden.) | ||
{{Lösung versteckt|1=Der Schattenpunkt <math>T</math> entspricht dem Schnitt der Ebene <math>E</math> mit der Geraden, die durch <math>S</math> verläuft und den Richtungsvektor der Sonnenstrahlen besitzt. | {{Lösung versteckt|1=Der Schattenpunkt <math>T</math> entspricht dem Schnitt der Ebene <math>E</math> mit der Geraden, die durch <math>S</math> verläuft und den Richtungsvektor der Sonnenstrahlen besitzt. | ||
Zeile 381: | Zeile 381: | ||
Einsetzen der Zeilen der Geradengleichung in die Ebenengleichung: | Einsetzen der Zeilen der Geradengleichung in die Ebenengleichung: | ||
<math>-2+ | <math>(-2+4s)+2(1+5s)+(15+7s)=-6.</math> | ||
Durch Umformen und Ausmultiplizieren erhält man: <math>r=-1</math> | Durch Umformen und Ausmultiplizieren erhält man: <math>r=-1</math> | ||
Zeile 387: | Zeile 387: | ||
Einsetzen von <math>r=-1</math> in die Geradengleichung ergibt den Schnittpunkt <math>T({-}6|{-}4|8)</math>. | Einsetzen von <math>r=-1</math> in die Geradengleichung ergibt den Schnittpunkt <math>T({-}6|{-}4|8)</math>. | ||
Schattenlänge des Baumes: <math>\vert{\vec{FT}}\vert= \vert{\begin{pmatrix} -4 \\ -5 \\ 8 \end{pmatrix}}\vert =\sqrt{16+25+64}=\sqrt{105}</math> | Schattenlänge des Baumes: <math>\vert{\vec{FT}}\vert= \vert{\begin{pmatrix} -4 \\ -5 \\ 8 \end{pmatrix}}\vert =\sqrt{16+25+64}=\sqrt{105}</math>. | ||
Damit hat der Schatten des Baumes eine Länge von ca. <math>10{,}25m</math>. | |||
|2=mögliche Lösung anzeigen|3=mögliche Lösung verbergen}} | |2=mögliche Lösung anzeigen|3=mögliche Lösung verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }} | | Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }} | ||
Zeile 394: | Zeile 395: | ||
'''a)''' Warum muss bei einer Koordinatengleichung <math>E\colon ax_1+bx_2+cx_3=d</math> einer Ebene <math>E</math> mindestens einer der Koeffizienten <math>a, b, c</math> ungleich null sein? | '''a)''' Warum muss bei einer Koordinatengleichung <math>E\colon ax_1+bx_2+cx_3=d</math> einer Ebene <math>E</math> mindestens einer der Koeffizienten <math>a, b, c</math> ungleich null sein? | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= Wenn <math>a, b, c</math> Null wären, dann wäre der Nullvektor <math>\vec{0}</math> ein Normalenvektor der Ebene. Der Nullvektor kann aber kein Normalenvektor sein. Das liegt daran, dass er die Länge 0 hat und damit nicht orthogonal zu einer Ebene sein kann.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''b)''' Begründe: Unterscheiden sich die Koordinatengleichungen der Form <math>E\colon ax_1+bx_2+cx_3=d</math> von zwei Ebenen nur in der Konstanten <math>d</math>, dann sind die Ebenen zueinander parallel. | '''b)''' Begründe: Unterscheiden sich die Koordinatengleichungen der Form <math>E\colon ax_1+bx_2+cx_3=d</math> von zwei Ebenen nur in der Konstanten <math>d</math>, dann sind die Ebenen zueinander parallel. | ||
{{Lösung versteckt|1=Wenn sich die beiden Ebenengleichungen nur in <math>d</math> unterscheiden | {{Lösung versteckt|1=Wenn sich die beiden Ebenengleichungen nur in <math>d</math> unterscheiden, ist der Vektor <math>\begin{pmatrix} a \\ b \\ c \end{pmatrix}<math></math> ein Normalenvektor von beiden Ebenen, das heißt er liegt orthogonal zu beiden Ebenen. Damit müssen die Ebenen parallel sein.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''c)''' Beurteile: Alle Ebenen, bei denen in der Koordinatengleichung <math>E\colon ax_1+bx_2+cx_3=d</math> die Koeffizienten <math>a</math> und <math>b</math> ungleich Null, aber <math>c=0</math> ist, haben eine Gemeinsamkeit. | '''c)''' Beurteile: Alle Ebenen, bei denen in der Koordinatengleichung <math>E\colon ax_1+bx_2+cx_3=d</math> die Koeffizienten <math>a</math> und <math>b</math> ungleich Null, aber <math>c=0</math> ist, haben eine Gemeinsamkeit bezüglich ihrer Lage. | ||
{{Lösung versteckt|1=Die Aussage ist wahr, da all diese Ebenen parallel zur <math>x_3</math>-Achse liegen.|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Die Aussage ist wahr, da all diese Ebenen parallel zur <math>x_3</math>-Achse liegen.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 410: | Zeile 411: | ||
Wir suchen die Koordinatengleichung der Ebene <math>E\colon \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}+ t \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math>. | Wir suchen die Koordinatengleichung der Ebene <math>E\colon \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}+ t \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math>. | ||
Ein Normalenvektor <math>\vec{n}=\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}</math> muss zu den Spannvektoren <math>\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}</math> und <math>\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math> orthogonal (senkrecht) sein, also ist <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \ | Ein Normalenvektor <math>\vec{n}=\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}</math> muss zu den Spannvektoren <math>\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}</math> und <math>\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math> orthogonal (senkrecht) sein, also ist <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \ast \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}=0</math> und <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \ast \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}=0</math>. | ||
Hieraus folgt | Hieraus folgt | ||
Zeile 422: | Zeile 423: | ||
Ansatz für die Koordinatengleichung: <math>E\colon 2x_1+2x_2+x_3=d</math>. | Ansatz für die Koordinatengleichung: <math>E\colon 2x_1+2x_2+x_3=d</math>. | ||
Um <math>d</math> zu bestimmen, berechnet man das Skalarprodukt von <math>\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}</math> mit <math>\vec{OA}=\begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}</math> und erhält <math>d=11</math>. | |||
Die Koordinatengleichung lautet somit: <math>E\colon 2x_1+2x_2+x_3=11</math>| Hervorhebung1}} | Die Koordinatengleichung lautet somit: <math>E\colon 2x_1+2x_2+x_3=11</math>| Hervorhebung1}} | ||
Zeile 432: | Zeile 433: | ||
{{Lösung versteckt|1=Ein Normalenvektor <math>\vec{n}</math> muss zu den Spannvektoren orthogonal (senkrecht) sein. | {{Lösung versteckt|1=Ein Normalenvektor <math>\vec{n}</math> muss zu den Spannvektoren orthogonal (senkrecht) sein. | ||
Also ist <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \ | Also ist <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \ast \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}=0</math> und <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \ast \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}=0</math>. | ||
Hieraus folgt das Gleichungssystem | Hieraus folgt das Gleichungssystem | ||
Zeile 444: | Zeile 445: | ||
Normalenvektor: <math>\begin{pmatrix} 9 \\ -3 \\ 7 \end{pmatrix}</math>. | Normalenvektor: <math>\begin{pmatrix} 9 \\ -3 \\ 7 \end{pmatrix}</math>. | ||
Das <math>d</math> berechnen wir | Das <math>d</math> berechnen wir mithilfe des Normalenvektors und den Orstvektor des Aufpunktes, d.h. es ist <math>d=\vec{n} \cdot \vec{OA}</math>: | ||
<math> | <math>9 \cdot 2 - 3 \cdot 1 + 7 \cdot 2=29</math> | ||
Koordinatenform der Ebenengleichung: <math>9x_1 - 3x_2 + 7x_3=29</math> | Koordinatenform der Ebenengleichung: <math>9x_1 - 3x_2 + 7x_3=29</math> | ||
Zeile 453: | Zeile 454: | ||
{{Box | ⭐Aufgabe 17: Parameter-, Normalen- und Koordinatengleichung | | {{Box | ⭐Aufgabe 17: Parameter-, Normalen- und Koordinatengleichung | | ||
Die Ebene <math>E</math> ist durch die drei Punkte <math>A(7|2|{-}1)</math>, <math>B(4|1|3)</math>, <math>C(1|3|2)</math> festgelegt. Bestimme eine Parametergleichung, eine Normalengleichung und eine Koordinatengleichung der Ebene E. | Die Ebene <math>E</math> ist durch die drei Punkte <math>A(7|2|{-}1)</math>, <math>B(4|1|3)</math>, <math>C(1|3|2)</math> festgelegt. Bestimme eine Parametergleichung, eine Normalengleichung und eine Koordinatengleichung der Ebene <math>E</math>. | ||
{{Lösung versteckt|1=<math>E\colon \vec{x} = \begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} -3 \\ -1 \\ 4 \end{pmatrix}+ t \cdot \begin{pmatrix} -6 \\ 1 \\ 3 \end{pmatrix}</math> | {{Lösung versteckt|1=<math>E\colon \vec{x} = \begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} -3 \\ -1 \\ 4 \end{pmatrix}+ t \cdot \begin{pmatrix} -6 \\ 1 \\ 3 \end{pmatrix}</math> |
Version vom 24. Mai 2021, 18:40 Uhr
Die Parameterform und die Punktprobe
Die Punktprobe
Spurpunkte
⭐ Normalenvektor
⭐ Normalenform und Koordinatenform von Ebenengleichungen
⭐Überführung der Parameterform in die Koordinatenform