Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 600: | Zeile 600: | ||
{{Box | Merke: Berechnung des Winkel zwischen zwei Ebenen | | {{Box | Merke: Berechnung des Winkel zwischen zwei Ebenen | | ||
Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. | Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Dazu kannst du die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Somit kann das Berechnen des Schnittwinkels zwischen zwei Ebenen auf das Berechnen des Winkels zwischen zwei Vektoren zurückgeführt werden. | ||
Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]]. | Merksatz}} | Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]]. | Merksatz}} | ||
{{Box | Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen | | {{Box | Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen | | ||
[[Datei:Abbildung Winkel zwischen zwei Ebenen.jpg| rechts | mini | | [[Datei:Abbildung Winkel zwischen zwei Ebenen.jpg| rechts | mini | Winkel zwischen zwei Ebenen]] | ||
Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>\vec{n}</math> und <math>\vec{m}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math>\cos(\alpha)=\frac{ \vec{n} \ast \vec{m}}{|\vec{n}| \cdot |\vec{m}|}</math>. | Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>\vec{n}</math> und <math>\vec{m}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math>\cos(\alpha)=\frac{ |\vec{n} \ast \vec{m}|}{|\vec{n}| \cdot |\vec{m}|}</math>. | ||
Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. | Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Mit der obigen Formel erhält man deshalb für <math>\alpha</math> immer Werte zwischen <math>0^{\circ}</math> und <math>90^{\circ}</math>. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Dafür musst du <math>\alpha</math> von <math>180^{\circ}</math> abziehen. Hier können dir Skizzen helfen.| Merksatz}} | ||
{{Box | Beispiel: Winkel berechnen zwischen zwei Ebenen | | {{Box | Beispiel: Winkel berechnen zwischen zwei Ebenen | | ||
Gegeben sind zwei Ebenen <math>E</math> und <math>F</math> mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix}+ s \cdot \begin{pmatrix} 1 \\ 1 \\ 0\end{pmatrix}</math> und <math>F\colon 7x_1+x_2-3x_3</math>. Berechne den Schnittpunkt zwischen den Ebenen. | Gegeben sind zwei Ebenen <math>E</math> und <math>F</math> mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix}+ s \cdot \begin{pmatrix} 1 \\ 1 \\ 0\end{pmatrix}</math> und <math>F\colon 7x_1+x_2-3x_3=1</math>. Berechne den Schnittpunkt zwischen den Ebenen. | ||
'''1. Schritt:''' Bestimmte die Normalenvektoren von <math>E</math> und <math>F</math>. | '''1. Schritt:''' Bestimmte die Normalenvektoren von <math>E</math> und <math>F</math>. | ||
Zeile 621: | Zeile 621: | ||
'''2. Schritt:''' Einsetzen der Normalenvektoren in die Formel. | '''2. Schritt:''' Einsetzen der Normalenvektoren in die Formel. | ||
<math>\cos(\alpha)=\frac{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \ast \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{ | <math>\cos(\alpha)=\frac{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \ast \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{15}{\sqrt{9} \cdot \sqrt{59}} \Leftrightarrow \cos(\alpha) = \frac{15}{3 \cdot \sqrt{59}} </math> | ||
'''3. Schritt:''' Auflösen der Gleichung. | '''3. Schritt:''' Auflösen der Gleichung. | ||
<math>\alpha = | <math>\alpha = arccos(\frac{16}{3 \cdot \sqrt {59}}) \Leftrightarrow \alpha \approx 46{,}03^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>46{,}03^{\circ}</math>.| Hervorhebung1}} | ||
Zeile 631: | Zeile 631: | ||
Sei <math>E</math> eine Ebene mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}</math> , | Sei <math>E</math> eine Ebene mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}</math> , | ||
<math>F</math> eine Ebene mit <math>F\colon 2x_1+6x_2 | <math>F</math> eine Ebene mit <math>F\colon 2x_1+6x_2+4x_3=2</math>. | ||
und <math>H</math> eine Ebene mit <math>H\colon 2x_1+4x_2-7x_3=13 </math> . | und <math>H</math> eine Ebene mit <math>H\colon 2x_1+4x_2-7x_3=13 </math> . | ||
Berechne den Winkel zwischen | Berechne den Winkel zwischen | ||
'''a)''' E und F | '''a)''' <math>E</math> und <math>F</math> | ||
{{Lösung versteckt|1= Bei der Ebene <math>E</math> handelt es sich um die <math> | {{Lösung versteckt|1= Bei der Ebene <math>E</math> handelt es sich um die <math>x_1x_2</math> -Ebene. Der Normalenvektor ist also <math>\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} </math>. Der Normalenvektor der Ebene <math>F</math> kann abgelesen werden: <math>\vec{m} = \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}</math>. | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
Zeile 646: | Zeile 646: | ||
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | ||
<math>\alpha = | <math>\alpha = arccos(\frac{4}{\sqrt {56}}) \Leftrightarrow \alpha \approx 57{,}69^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>57{,}69^{\circ}</math>. | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''b)''' F und H | '''b)''' <math>F</math> und <math>H</math> | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 662: | Zeile 662: | ||
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | ||
<math>\alpha = | <math>\alpha = arccos(0) \Leftrightarrow \alpha = 90^{\circ}</math> Der Winkel zwischen den Ebenen <math>F</math> und <math>H</math> beträgt ca. <math>90^{\circ} </math>. | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 670: | Zeile 670: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Bei der Ebene <math>E</math> handelt es sich um die <math> | Bei der Ebene <math>E</math> handelt es sich um die <math>x_1x_2</math> -Ebene. Der Normalenvektor ist also <math>\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} </math>. Der Normalenvektor der Ebene <math>H</math> kann abgelesen werden: <math>\vec{m} = \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix}</math>. | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
Zeile 678: | Zeile 678: | ||
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | ||
<math>\alpha = | <math>\alpha = arccos(\frac{7}{\sqrt {69}}) \Leftrightarrow \alpha \approx 32{,}57^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>H</math> beträgt ca. <math>32{,}57^{\circ}</math>. | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 706: | Zeile 706: | ||
{{Box | Aufgabe 15: Bank am Wanderweg | | {{Box | Aufgabe 15: Bank am Wanderweg | | ||
An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math> | An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math>S\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0{,}4 \\ 0\end{pmatrix}, r,s \in [0, 1]</math> und die Rückenlehne durch die Ebene <math>R_1\colon -x_2 + 0{,}4 x_3 = -0{,}2</math> beschrieben werden kann. | ||
'''a)''' Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen <math>100^{\circ}</math> und <math>110^{\circ}</math> liegen. Überprüfe, ob dies auf die neue Bank zutrifft. | '''a)''' Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen <math>100^{\circ}</math> und <math>110^{\circ}</math> liegen. Überprüfe, ob dies auf die neue Bank zutrifft. | ||
Zeile 716: | Zeile 716: | ||
[[Datei:Winkel zwischen zwei Ebenen (Bankaufgabe).png|mini|Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank]] | [[Datei:Winkel zwischen zwei Ebenen (Bankaufgabe).png|mini|Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank]] | ||
Als Normalenvektor der Ebene <math> | Als Normalenvektor der Ebene <math>S</math> erhält man <math>\vec{n}=\begin{pmatrix} 0 \\ 0 \\ 0{,}8 \end{pmatrix}</math> und als Normalenvektor der Ebene <math>R_1</math> erhält man <math>\vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix}</math> . | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
Zeile 722: | Zeile 722: | ||
<math>\cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}}</math> | <math>\cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}}</math> | ||
Umstellen der Formel ergibt: <math> \gamma= | Umstellen der Formel ergibt: <math> \gamma=arccos \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2^{\circ}</math> | ||
Wie in der Abbildung zu sehen wurde der Winkel <math>\gamma</math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math>\alpha</math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180^\circ - \gamma </math> berechnet: <math>180^{\circ} - 68{,}2^{\circ} = 111{,}8^{\circ}</math>. Mit einem Wert von <math> 111{,}8^{\circ}</math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | Wie in der Abbildung zu sehen wurde der Winkel <math>\gamma</math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math>\alpha</math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180^\circ - \gamma </math> berechnet: <math>180^{\circ} - 68{,}2^{\circ} = 111{,}8^{\circ}</math>. Mit einem Wert von <math> 111{,}8^{\circ}</math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 730: | Zeile 730: | ||
[[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]] | [[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]] | ||
Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche | Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche kann durch die selbe Ebene beschrieben werden, wie die Sitzfläche der anderen Bank (<math>S</math>). Die Rückenlehne entspricht der Ebene <math> R_2\colon -x_2 - 0{,}4 x_3 = -1 </math> Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen. | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 746: | Zeile 746: | ||
<math>\cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math> | <math>\cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math> | ||
Umstellen der Formel ergibt: <math> \beta= | Umstellen der Formel ergibt: <math> \beta=arccos \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|grün}}}} | | Arbeitsmethode | Farbe={{Farbe|grün}}}} |
Version vom 19. Mai 2021, 20:36 Uhr
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Untersuchung der Lagebeziehung von zwei Ebenen
Beide Ebenengleichungen in Parameterform
⭐Ebenengleichungen in Parameter- und Koordinatenform
⭐Beide Ebenengleichungen in Koordinatenform
⭐Berechnung des Winkels zwischen Ebene und Ebene