Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 360: | Zeile 360: | ||
{{Box | ⭐Aufgabe 14: Schattenwurf (Gerade und Ebene in Koordinatenform) |Ein Baum mit dem Fußpunkt <math>F({-}2|1|0)</math> und der Spitze <math>S({-}2|1|15)</math> wird von der Sonne bestrahlt, deren Sonnenstrahlen parallel zum Vektor <math>\begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}</math> verlaufen. Der Baum wirft einen Schatten auf einen Hang, der durch die Ebene <math>E\colon x_1+2x_2+x_3={-}6</math> beschrieben wird. | {{Box | ⭐Aufgabe 14: Schattenwurf (Gerade und Ebene in Koordinatenform) |Ein Baum mit dem Fußpunkt <math>F({-}2|1|0)</math> und der Spitze <math>S({-}2|1|15)</math> wird von der Sonne bestrahlt, deren Sonnenstrahlen parallel zum Vektor <math>\begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}</math> verlaufen. Der Baum wirft einen Schatten auf einen Hang, der durch die Ebene <math>E\colon x_1+2x_2+x_3={-}6</math> beschrieben wird. | ||
Wo liegt der Schattenpunkt T der Baumspitze S auf dem Hang und wie lang ist der Schatten des Baumes? | Wo liegt der Schattenpunkt <math>T</math> der Baumspitze <math>S</math> auf dem Hang und wie lang ist der Schatten des Baumes? | ||
{{Lösung versteckt|1=Der Schattenpunkt T entspricht dem Schnitt der Ebene E mit der Geraden, die durch S verläuft und den Richtungsvektor der Sonnenstrahlen besitzt. | {{Lösung versteckt|1=Der Schattenpunkt <math>T</math> entspricht dem Schnitt der Ebene <math>E</math> mit der Geraden, die durch <math>S</math> verläuft und den Richtungsvektor der Sonnenstrahlen besitzt. | ||
Geradengleichung: <math>E\colon \vec{x}=\begin{pmatrix} -2 \\ 1 \\ 15 \end{pmatrix}+s \cdot \begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}</math> | Geradengleichung: <math>E\colon \vec{x}=\begin{pmatrix} -2 \\ 1 \\ 15 \end{pmatrix}+s \cdot \begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}</math> | ||
Zeile 374: | Zeile 374: | ||
Einsetzen von <math>r=-1</math> in die Geradengleichung ergibt den Schnittpunkt <math>T({-}6|{-}4|8)</math>. | Einsetzen von <math>r=-1</math> in die Geradengleichung ergibt den Schnittpunkt <math>T({-}6|{-}4|8)</math>. | ||
Schattenlänge des Baumes: <math>\vert{\vec{FT}}\vert= \vert{\begin{pmatrix} -4 \\ -5 \\ 8 \end{pmatrix}}\vert =\sqrt{16+25+64}=\sqrt{105}</math> LE. | Schattenlänge des Baumes: <math>\vert{\vec{FT}}\vert= \vert{\begin{pmatrix} -4 \\ -5 \\ 8 \end{pmatrix}}\vert =\sqrt{16+25+64}=\sqrt{105}</math> LE (Längeneinheiten). | ||
|2=mögliche Lösung anzeigen|3=mögliche Lösung verbergen}} | |2=mögliche Lösung anzeigen|3=mögliche Lösung verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }} | |||
{{Box | ⭐Aufgabe 15: Reflexion zur Koordinatenform | | {{Box | ⭐Aufgabe 15: Reflexion zur Koordinatenform | | ||
'''a)''' Warum muss bei einer Koordinatengleichung <math>E\colon ax_1+bx_2+cx_3=d</math> einer Ebene E mindestens einer der Koeffizienten <math>a, b, c</math> ungleich null sein? | '''a)''' Warum muss bei einer Koordinatengleichung <math>E\colon ax_1+bx_2+cx_3=d</math> einer Ebene <math>E</math> mindestens einer der Koeffizienten <math>a, b, c</math> ungleich null sein? | ||
{{Lösung versteckt|1=Angenommen alle Koeffizienten sind gleich Null: Dann fallen alle Variablen weg und die Gleichung <math>0=d</math> beschreibt keine Ebene mehr.|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Angenommen alle Koeffizienten sind gleich Null: Dann fallen alle Variablen weg und die Gleichung <math>0=d</math> beschreibt keine Ebene mehr.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''b)''' Begründe: Unterscheiden sich die Koordinatengleichungen der Form <math>E\colon ax_1+bx_2+cx_3=d</math> von zwei Ebenen nur in der Konstanten d, dann sind die Ebenen zueinander parallel. | '''b)''' Begründe: Unterscheiden sich die Koordinatengleichungen der Form <math>E\colon ax_1+bx_2+cx_3=d</math> von zwei Ebenen nur in der Konstanten <math>d</math>, dann sind die Ebenen zueinander parallel. | ||
{{Lösung versteckt|1=Wenn sich die beiden Ebenengleichungen nur in d unterscheiden haben sie den gleichen Normalenvektor <math>\vec{n}</math>, der orthogonal zur Ebene liegt. Damit müssen die Ebenen parallel sein.|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Wenn sich die beiden Ebenengleichungen nur in <math>d</math> unterscheiden haben sie den gleichen Normalenvektor <math>\vec{n}</math>, der orthogonal zur Ebene liegt. Damit müssen die Ebenen parallel sein.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''c)''' Beurteile: Alle Ebenen, bei denen in der Koordinatengleichung <math>E\colon ax_1+bx_2+cx_3=d</math> die Koeffizienten <math>a</math> und <math>b</math> ungleich Null, aber <math>c=0</math> ist, haben eine Gemeinsamkeit. | '''c)''' Beurteile: Alle Ebenen, bei denen in der Koordinatengleichung <math>E\colon ax_1+bx_2+cx_3=d</math> die Koeffizienten <math>a</math> und <math>b</math> ungleich Null, aber <math>c=0</math> ist, haben eine Gemeinsamkeit. | ||
{{Lösung versteckt|1=Die Aussage ist wahr, da all diese Ebenen parallel zur <math>x_3</math>-Achse liegen.|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Die Aussage ist wahr, da all diese Ebenen parallel zur <math>x_3</math>-Achse liegen.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }}<br /> | |||
===⭐Überführung der Parameterform in die Koordinatenform=== | ===⭐Überführung der Parameterform in die Koordinatenform=== | ||
<br />{{Box | Beispiel: Von der Parameter- zur Koordinatenform einer Ebenengleichung | Wir suchen die Koordinatengleichung der Ebene <math>E\colon \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}+ t \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math>. Ein Normalenvektor <math>\vec{n}=\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}</math> muss zu den Spannvektoren <math>\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}</math> und <math>\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math> orthogonal (senkrecht) sein, also ist <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}=0</math> und <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}=0</math>. Hieraus folgt <math>n_1-n_2=0</math> <math>n_1-3n_2+4n_3 =0</math>. Wählt man z.B. <math>n_2=2</math>, so erhält man durch Einsetzen in die Gleichungen des Gleichungssystems und Umformen <math>n_1=2</math> und <math>n_3=1</math> und damit <math>\vec{n}=\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}</math>. Ansatz für die Koordinatengleichung: <math>E\colon 2x_1+2x_2+x_3=d</math>. Man berechnet <math>d</math> indem man für <math>x_1, x_2</math> und <math>x_3</math> die Koordinaten des Stützvektors von E einsetzt: <math>d=2 \cdot 2 + 2 \cdot 1 + 1 \cdot 5=11</math>. Koordinatengleichung: <math>E\colon 2x_1+2x_2+x_3=11</math>| Hervorhebung1}} | <br />{{Box | Beispiel: Von der Parameter- zur Koordinatenform einer Ebenengleichung | Wir suchen die Koordinatengleichung der Ebene <math>E\colon \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}+ t \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math>. Ein Normalenvektor <math>\vec{n}=\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}</math> muss zu den Spannvektoren <math>\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}</math> und <math>\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math> orthogonal (senkrecht) sein, also ist <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}=0</math> und <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}=0</math>. | ||
Hieraus folgt <math>n_1-n_2=0</math> <math>n_1-3n_2+4n_3 =0</math>. Wählt man z.B. <math>n_2=2</math>, so erhält man durch Einsetzen in die Gleichungen des Gleichungssystems und Umformen <math>n_1=2</math> und <math>n_3=1</math> und damit <math>\vec{n}=\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}</math>. | |||
Ansatz für die Koordinatengleichung: <math>E\colon 2x_1+2x_2+x_3=d</math>. | |||
Man berechnet <math>d</math> indem man für <math>x_1, x_2</math> und <math>x_3</math> die Koordinaten des Stützvektors von E einsetzt: <math>d=2 \cdot 2 + 2 \cdot 1 + 1 \cdot 5=11</math>. Koordinatengleichung: <math>E\colon 2x_1+2x_2+x_3=11</math>| Hervorhebung1}} | |||
Version vom 9. Mai 2021, 21:09 Uhr
Die Parameterform und die Punktprobe
Die Punktprobe
Spurpunkte
⭐ Normalenvektor
⭐ Normalenform und Koordinatenform von Ebenengleichungen
⭐Überführung der Parameterform in die Koordinatenform
Ein Normalenvektor muss zu den Spannvektoren orthogonal (senkrecht) sein.
Also ist und .
Hieraus folgt das Gleichungssystem
.
Wählt man z.B. folgt durch Einsetzen in das Gleichungssystem und Umformen: und .
Normalenvektor: .
Das berechnen wir durch :
Koordinatenform der Ebenengleichung: