Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 210: | Zeile 210: | ||
Sei <math>E</math> eine Ebene mit dem Normalenvektor <math>\vec{n}</math> und <math>g</math> eine Gerade mit dem Richtungsvektor <math>\vec{u}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>g</math> kann mit folgender Formel berechnet werden: <math> \sin(\alpha)=\frac{|\vec{n} \ast \vec{u}|}{|\vec{n}| \cdot |\vec{u}|}</math>. | Sei <math>E</math> eine Ebene mit dem Normalenvektor <math>\vec{n}</math> und <math>g</math> eine Gerade mit dem Richtungsvektor <math>\vec{u}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>g</math> kann mit folgender Formel berechnet werden: <math> \sin(\alpha)=\frac{|\vec{n} \ast \vec{u}|}{|\vec{n}| \cdot |\vec{u}|}</math>. | ||
Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von Gerade und Ebene eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0 ^{\circ}</math> und <math>90 ^{\circ}</math> liegen. Ist dein berechneter Winkel <math> \alpha > 90 ^{\circ}</math>, so musst du <math> 180 ^{\circ} - \alpha </math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen. | Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von Gerade und Ebene eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0^{\circ}</math> und <math>90^{\circ}</math> liegen. Ist dein berechneter Winkel <math> \alpha > 90^{\circ}</math>, so musst du <math> 180^{\circ} - \alpha </math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen. | ||
Wenn du wissen möchtest, warum du nicht - wie beim Winkel zwischen zwei Geraden - den Kosinus benutzt, kannst du das hier nachlesen: | Wenn du wissen möchtest, warum du nicht - wie beim Winkel zwischen zwei Geraden - den Kosinus benutzt, kannst du das hier nachlesen: | ||
Zeile 220: | Zeile 220: | ||
Der Normalenvektor <math>\vec{n}</math> einer Ebene steht in einem <math>90^{\circ} </math> Winkel zur Ebene <math>E</math>. | Der Normalenvektor <math>\vec{n}</math> einer Ebene steht in einem <math>90^{\circ} </math> Winkel zur Ebene <math>E</math>. | ||
Wenn man den Winkel zwischen einer Gerade <math>g</math> und einer Ebene <math>E</math> berechnen will, kann wie beim Winkel zwischen zwei Geraden mit der Kosinusfunktion der Winkel zwischen dem Richtungsvektor von <math>g</math> und dem Normalenvektor von <math>E</math> berechnet werden. In Abbildung ... ist dieser Winkel mit <math>\beta</math> bezeichnet. Um nun den Winkel <math>\alpha</math> zwischen <math>g</math> und <math>E</math> zu erhalten, müssen wir <math>\beta</math> von <math> 90 ^\circ </math> abziehen. Dies entspricht aufgrund trigonometrischer Gesetzmäßigkeiten der obigen Formel mit der Sinusfunktion.|2=Erklärung anzeigen|3=Erklärung verbergen}} | Wenn man den Winkel zwischen einer Gerade <math>g</math> und einer Ebene <math>E</math> berechnen will, kann wie beim Winkel zwischen zwei Geraden mit der Kosinusfunktion der Winkel zwischen dem Richtungsvektor von <math>g</math> und dem Normalenvektor von <math>E</math> berechnet werden. In Abbildung ... ist dieser Winkel mit <math>\beta</math> bezeichnet. Um nun den Winkel <math>\alpha</math> zwischen <math>g</math> und <math>E</math> zu erhalten, müssen wir <math>\beta</math> von <math> 90^\circ </math> abziehen. Dies entspricht aufgrund trigonometrischer Gesetzmäßigkeiten der obigen Formel mit der Sinusfunktion.|2=Erklärung anzeigen|3=Erklärung verbergen}} | ||
| Merksatz}} | | Merksatz}} | ||
Zeile 274: | Zeile 274: | ||
{{Box | Aufgabe 7: Gerade gesucht | | {{Box | Aufgabe 7: Gerade gesucht | | ||
Eine Gerade <math>g</math> soll die <math>x_1-x_2</math>-Ebene in einem Winkel von <math>45 ^\circ</math> schneiden. Über die Gerade <math>g</math> ist nur bekannt, dass sie im Punkt <math>P (1|2|3) </math> beginnt und sie in Richtung des Vektors <math>\vec{x}=\begin{pmatrix} 3\\ 6\\ z \end{pmatrix}</math> verläuft. Stelle die Gerade <math>g</math> auf. | Eine Gerade <math>g</math> soll die <math>x_1-x_2</math>-Ebene in einem Winkel von <math>45^\circ</math> schneiden. Über die Gerade <math>g</math> ist nur bekannt, dass sie im Punkt <math>P (1|2|3) </math> beginnt und sie in Richtung des Vektors <math>\vec{x}=\begin{pmatrix} 3\\ 6\\ z \end{pmatrix}</math> verläuft. Stelle die Gerade <math>g</math> auf. | ||
{{Lösung versteckt|1=Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1=Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
Zeile 545: | Zeile 545: | ||
Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>\vec{n}</math> und <math>\vec{m}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math> \cos(\alpha)=\frac{ \vec{n} \ast \vec{m}}{|\vec{n}| \cdot |\vec{m}|}</math>. | Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>\vec{n}</math> und <math>\vec{m}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math> \cos(\alpha)=\frac{ \vec{n} \ast \vec{m}}{|\vec{n}| \cdot |\vec{m}|}</math>. | ||
Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0 ^{\circ}</math> und <math>90 ^{\circ}</math> liegen. Ist dein berechneter Winkel <math> \alpha > 90 ^{\circ}</math>, so musst du <math> 180 ^{\circ} - \alpha </math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen.| Merksatz}} | Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0^{\circ}</math> und <math>90^{\circ}</math> liegen. Ist dein berechneter Winkel <math> \alpha > 90^{\circ}</math>, so musst du <math> 180^{\circ} - \alpha </math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen.| Merksatz}} | ||
{{Box | Beispiel: Winkel berechnen zwischen zwei Ebenen | | {{Box | Beispiel: Winkel berechnen zwischen zwei Ebenen | | ||
Zeile 561: | Zeile 561: | ||
'''3. Schritt:''' Auflösen der Gleichung. | '''3. Schritt:''' Auflösen der Gleichung. | ||
<math> \alpha = cos^{-1}(\frac{16}{3 \cdot \sqrt {59}}) \Leftrightarrow \alpha \approx 46{,}03 ^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>46{,}03 ^{\circ} </math>.| Hervorhebung1}} | <math> \alpha = cos^{-1}(\frac{16}{3 \cdot \sqrt {59}}) \Leftrightarrow \alpha \approx 46{,}03^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>46{,}03^{\circ} </math>.| Hervorhebung1}} | ||
Zeile 582: | Zeile 582: | ||
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | ||
<math> \alpha = cos^{-1}(\frac{4}{\sqrt {56}}) \Leftrightarrow \alpha \approx 57{,}69 ^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>57{,}69 ^{\circ} </math>. | <math> \alpha = cos^{-1}(\frac{4}{\sqrt {56}}) \Leftrightarrow \alpha \approx 57{,}69^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>57{,}69^{\circ} </math>. | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 598: | Zeile 598: | ||
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | ||
<math> \alpha = cos^{-1}(0) \Leftrightarrow \alpha = 90 ^{\circ}</math> Der Winkel zwischen den Ebenen <math>F</math> und <math>H</math> beträgt ca. <math>90 ^{\circ} </math>. | <math> \alpha = cos^{-1}(0) \Leftrightarrow \alpha = 90^{\circ}</math> Der Winkel zwischen den Ebenen <math>F</math> und <math>H</math> beträgt ca. <math>90^{\circ} </math>. | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 614: | Zeile 614: | ||
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | ||
<math> \alpha = cos^{-1}(\frac{7}{\sqrt {69}}) \Leftrightarrow \alpha \approx 32{,}57 ^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>H</math> beträgt ca. <math>32{,}57 ^{\circ} </math>. | <math> \alpha = cos^{-1}(\frac{7}{\sqrt {69}}) \Leftrightarrow \alpha \approx 32{,}57^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>H</math> beträgt ca. <math>32{,}57^{\circ} </math>. | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 623: | Zeile 623: | ||
{{Box | Aufgabe 14: Ebenen gesucht| | {{Box | Aufgabe 14: Ebenen gesucht| | ||
Der Winkel zwischen den beiden Vektoren <math> \vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math> \vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> beträgt <math> 67{,}62 ^{\circ} </math>. | Der Winkel zwischen den beiden Vektoren <math> \vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math> \vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> beträgt <math> 67{,}62^{\circ} </math>. | ||
Gib die Gleichungen zweier Ebenen <math>E</math> und <math>F</math> an, die sich in einem Winkel von <math> 67{,}62 ^{\circ} </math> schneiden. | Gib die Gleichungen zweier Ebenen <math>E</math> und <math>F</math> an, die sich in einem Winkel von <math> 67{,}62^{\circ} </math> schneiden. | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 658: | Zeile 658: | ||
<math> \cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} </math> | <math> \cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} </math> | ||
Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2 ^\circ </math> | Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2^\circ </math> | ||
Wie in der Abbildung zu sehen wurde der Winkel <math> \gamma </math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math> \alpha </math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180 ^\circ - \gamma </math> berechnet: <math>180 ^\circ - 68{,}2 ^\circ = 111{,}8 ^\circ </math>. Mit einem Wert von <math> 111{,}8 ^\circ </math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | Wie in der Abbildung zu sehen wurde der Winkel <math> \gamma </math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math> \alpha </math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180^\circ - \gamma </math> berechnet: <math>180^\circ - 68{,}2^\circ = 111{,}8^\circ </math>. Mit einem Wert von <math> 111{,}8^\circ </math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''b)''' [[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]] | '''b)''' [[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]] | ||
Zeile 680: | Zeile 680: | ||
<math> \cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math> | <math> \cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math> | ||
Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6 ^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6 ^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|grün}}}} | | Arbeitsmethode | Farbe={{Farbe|grün}}}} |
Version vom 9. Mai 2021, 19:08 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt. Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Untersuchung der Lagebeziehung von zwei Ebenen
Beide Ebenengleichungen in Parameterform
⭐Ebenengleichungen in Parameter- und Koordinatenform
⭐Beide Ebenengleichungen in Koordinatenform
⭐Berechnung des Winkels zwischen Ebene und Ebene