Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 635: | Zeile 635: | ||
'''a)''' Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen <math>100^{\circ}</math> und <math>110^{\circ}</math> liegen. Überprüfe, ob dies auf die neue Bank zutrifft. | '''a)''' Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen <math>100^{\circ}</math> und <math>110^{\circ}</math> liegen. Überprüfe, ob dies auf die neue Bank zutrifft. | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= Mache dir eine Skizze. Überlege genau, welchen Winkel du berechnen musst.|2=Tipp anzeigen|3=Tipp verbergen}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
[[Datei:Winkel zwischen zwei Ebenen (Bankaufgabe).png|mini|Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank]] | |||
Als Normalenvektor der Ebene <math>S_1</math> erhält man <math> \vec{n}=\begin{pmatrix} 0 \\ 0 \\ 0{,}8 \end{pmatrix} </math> und als Normalenvektor der Ebene <math> R_1</math> <math>\vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix} </math> . | |||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
Zeile 646: | Zeile 648: | ||
Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2 ^\circ </math> | Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2 ^\circ </math> | ||
Wie in der Abbildung zu sehen wurde der Winkel <math> \gamma </math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math> \alpha </math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180 ^\circ - \gamma </math> berechnet: <math>180 ^\circ - 68{,}2 ^\circ = 111{,}8 ^\circ </math>. Mit einem Wert von <math> 111{,}8 ^\circ </math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | |||
'''b)''' [[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]] | |||
Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche entspricht der Ebene <math> S_2: \vec{x} = \begin{pmatrix} 0 \\ 0,8 \\ 0,5 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0,4 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0 \\ 0\end{pmatrix}</math> und die Rückenlehne der Ebene <math> R_2: -x_2 - 0{,}4 x_3 = -1 </math> Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen. | |||
{{Lösung versteckt|1= | |||
[[Datei:Aufgabe Bank (4).png|mini|Skizze: Winkel zwischen den beiden Bänken am Wanderweg]] | |||
Gesucht ist der Winkel zwischen der Ebene <math>R_1</math> und der Ebene <math>R_2</math>. Nutze zur Berechnung die Normalenvektoren der Ebenen.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | |||
{{Lösung versteckt|1= Es soll der Winkel zwischen den beiden Rückenlehnen <math>R_1</math> und <math>R_2</math> berechnet werden. | {{Lösung versteckt|1= Es soll der Winkel zwischen den beiden Rückenlehnen <math>R_1</math> und <math>R_2</math> berechnet werden. | ||
Die Normalenvektoren der Ebenen lauten <math> \vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix} </math> und <math> \vec{l}=\begin{pmatrix} 0 \\ -1 \\ -0{,}4 \end{pmatrix} </math>. | Die Normalenvektoren der Ebenen lauten <math> \vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix} </math> und <math> \vec{l}=\begin{pmatrix} 0 \\ -1 \\ -0{,}4 \end{pmatrix} </math>. |
Version vom 9. Mai 2021, 13:18 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt. Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Untersuchung der Lagebeziehung von zwei Ebenen
Beide Ebenengleichungen in Parameterform
⭐Ebenengleichungen in Parameter- und Koordinatenform
⭐Beide Ebenengleichungen in Koordinatenform
⭐Berechnung des Winkels zwischen Ebene und Ebene