Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 122: | Zeile 122: | ||
'''b)''' Bestimme eine Koordinatengleichung der Ebene E | '''b)''' Bestimme eine Koordinatengleichung der Ebene E | ||
{{Lösung versteckt|1= .|2=mögliche Lösung anzeigen|3=mögliche Lösung verbergen}} | |||
Vor dem Rathaus steht das Denkmals „Roland von Bremen“ mit standhaftem Blick auf dem Dom. Sein Fußpunkt ist <math>R(-30|20|z)</math>. Er wurde genau vertikal, d.h. senkrecht auf der <math>x_1x_2</math>-Ebene errichtet. | Vor dem Rathaus steht das Denkmals „Roland von Bremen“ mit standhaftem Blick auf dem Dom. Sein Fußpunkt ist <math>R(-30|20|z)</math>. Er wurde genau vertikal, d.h. senkrecht auf der <math>x_1x_2</math>-Ebene errichtet. | ||
Zeile 127: | Zeile 129: | ||
'''c)''' Berechne die Zahl z derart, dass R in der Ebene liegt. | '''c)''' Berechne die Zahl z derart, dass R in der Ebene liegt. | ||
| Arbeitsmethode}} | | Arbeitsmethode}} | ||
{{Lösung versteckt|1= .|2=mögliche Lösung anzeigen|3=mögliche Lösung verbergen}} | |||
{{Box | Aufgabe 13: Schattenwurf (Gerade und Ebene in Koordinatenform) |Ein Baum mit dem Fußpunkt <math>F({-}2|1|0)</math> und der Spitze <math>S({-}2|1|15)</math> wird von der Sonne bestrahlt, deren Sonnenstrahlen parallel zum Vektor <math>\begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}</math> verlaufen. Der Baum wirft einen Schatten auf einen Hang, der durch die Ebene <math>E:x_1+2x_2+x_3={-}6</math> beschrieben wird. | {{Box | Aufgabe 13: Schattenwurf (Gerade und Ebene in Koordinatenform) |Ein Baum mit dem Fußpunkt <math>F({-}2|1|0)</math> und der Spitze <math>S({-}2|1|15)</math> wird von der Sonne bestrahlt, deren Sonnenstrahlen parallel zum Vektor <math>\begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}</math> verlaufen. Der Baum wirft einen Schatten auf einen Hang, der durch die Ebene <math>E:x_1+2x_2+x_3={-}6</math> beschrieben wird. |
Version vom 9. Mai 2021, 11:59 Uhr
Die Parameterform und die Punktprobe
Normalenform und Koordinatenform von Ebenengleichungen
Eine Punktprobe mithilfe der Koordinatenform einer Ebenengleichung führt man durch, indem man die Koordinaten für die Parameter in die Gleichung einsetzt und kontrolliert, ob die Aussage wahr ist.
. Der Punkt A liegt nicht in der Ebene.
mögliche Lösung: ist der Aufpunkt. Den Normalenvektor berechnen wir mithilfe des Punktes . Damit ist , d.h. .
Normalengleichung:
ist der Punkt, in dem das Tischbein auf die Tischplatte trifft, liegt somit in der Ebene der Tischplatte und dient als Aufpunkt der Ebenengleichung. Den Normalenvektor berechnen wir nach dem gleichen Verfahren wie bereits in der vorherigen Aufgabe durch die Berechnung von .
Normalengleichung:
.
Überführung der Parameterform in die Koordinatenform