Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 555: | Zeile 555: | ||
'''2. Schritt:''' Einsetzen der Normalenvektoren in die Formel. | '''2. Schritt:''' Einsetzen der Normalenvektoren in die Formel. | ||
<math>cos(\alpha) = \frac{ \left| \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} \ast \begin{pmatrix} 7 \\ 1 \\ -3 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} \right| \cdot \ left| \begin{pmatrix} 7 \\ 1 \\ -3 \end{pmatrix} \right| } \Leftrightarrow cos(\alpha) = \frac{16}{\sqrt{9 | <math>cos(\alpha) = \frac{ \left| \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} \ast \begin{pmatrix} 7 \\ 1 \\ -3 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} \right| \cdot \ left| \begin{pmatrix} 7 \\ 1 \\ -3 \end{pmatrix} \right| } \Leftrightarrow cos(\alpha) = \frac{16}{\sqrt{9} \cdot \sqrt{59}} \Leftrightarrow cos(\alpha) = \frac{16}{3 \cdot \sqrt{59}}</math> | ||
'''3. Schritt:''' Auflösen der Gleichung. | '''3. Schritt:''' Auflösen der Gleichung. | ||
Zeile 562: | Zeile 562: | ||
{{Box | Aufgabe | {{Box | Aufgabe 13: Schnittwinkel zwischen Ebenen | | ||
Sei <math>E</math> eine Ebene mit <math>E: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix | Sei <math>E</math> eine Ebene mit <math>E: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}</math> , | ||
<math>F</math> eine Ebene mit <math>F: 2x_1+6x_2-4x_3=2</math>. | <math>F</math> eine Ebene mit <math>F: 2x_1+6x_2-4x_3=2</math>. | ||
und <math>H</math> eine Ebene mit <math>H: 2x_1+4x_2-7x_3=13 </math> . | und <math>H</math> eine Ebene mit <math>H: 2x_1+4x_2-7x_3=13 </math> . | ||
Zeile 571: | Zeile 571: | ||
'''a)''' E und F | '''a)''' E und F | ||
'''b)''' F und H und | '''b)''' F und H und | ||
'''c)'''E und H. | '''c)'''E und H. | ||
Zeile 620: | Zeile 622: | ||
{{Box | Aufgabe | {{Box | Aufgabe 14: Ebenen gesucht| | ||
Der Winkel zwischen den beiden Vektoren <math> \vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math> \vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> beträgt <math> 67{,}62 ^{\circ} </math>. | Der Winkel zwischen den beiden Vektoren <math> \vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math> \vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> beträgt <math> 67{,}62 ^{\circ} </math>. | ||
Zeile 628: | Zeile 630: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Der Winkel zwischen zwei Ebenen entspricht dem Winkel zwischen ihren Normalenvektoren. Da der Winkel zwischen den beiden angebenen Vektoren <math> \vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math> \vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> genau dem Winkel entspricht, den die Ebenen einschließen sollen, können sie als Normalenvektoren der Ebenen verwendet werden. Die Punkte durch die die Ebenen laufen, können frei gewählt werden. | Der Winkel zwischen zwei Ebenen entspricht dem Winkel zwischen ihren Normalenvektoren. Da der Winkel zwischen den beiden angebenen Vektoren <math> \vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math> \vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> genau dem Winkel entspricht, den die Ebenen einschließen sollen, können sie als Normalenvektoren der Ebenen verwendet werden. Die Punkte, durch die die Ebenen laufen, können frei gewählt werden. | ||
Eine mögliche Lösung für die Ebenen lautet daher: | Eine mögliche Lösung für die Ebenen lautet daher: | ||
Zeile 639: | Zeile 641: | ||
{{Box | Aufgabe | {{Box | Aufgabe 15: Bank am Wanderweg | | ||
An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math> S_1: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0{,}4 \\ 0\end{pmatrix}, r,s \in [0, 1] </math> und die Rückenlehne durch die Ebene <math>R_1: -x_2 + 0{,}4 x_3 = -0{,}2 </math> beschrieben werden kann. | An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math> S_1: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0{,}4 \\ 0\end{pmatrix}, r,s \in [0, 1] </math> und die Rückenlehne durch die Ebene <math>R_1: -x_2 + 0{,}4 x_3 = -0{,}2 </math> beschrieben werden kann. | ||
Zeile 682: | Zeile 684: | ||
Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6 ^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6 ^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6 ^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6 ^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode}} | | Arbeitsmethode | Farbe={{Farbe|grün}}}} |
Version vom 9. Mai 2021, 10:26 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt. Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Untersuchung der Lagebeziehung von zwei Ebenen
Beide Ebenengleichungen in Parameterform
⭐Ebenengleichungen in Parameter- und Koordinatenform
⭐Beide Ebenengleichungen in Koordinatenform
⭐Berechnung des Winkels zwischen Ebene und Ebene