Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 67: | Zeile 67: | ||
==Überführung der Parameterform in die Koordinatenform== | ==Überführung der Parameterform in die Koordinatenform== | ||
<br />{{Box | Beispiel: Von der Parameter- zur Koordinatenform einer Ebenengleichung | Wir suchen die Koordinatengleichung der Ebene <math>E: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}+ t \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math>. Ein Normalenvektor <math>\vec{n}=\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}</math> muss zu den Spannvektoren <math>\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}</math> und <math>\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math> orthogonal (senkrecht) sein, also ist <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}=0</math> und <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}=0</math>. Hieraus folgt XYZXYZ| Hervorhebung1}} | <br />{{Box | Beispiel: Von der Parameter- zur Koordinatenform einer Ebenengleichung | Wir suchen die Koordinatengleichung der Ebene <math>E: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}+ t \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math>. Ein Normalenvektor <math>\vec{n}=\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}</math> muss zu den Spannvektoren <math>\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}</math> und <math>\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}</math> orthogonal (senkrecht) sein, also ist <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}=0</math> und <math>\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}=0</math>. Hieraus folgt <math>n_1-n_2=0</math> <math>n_1-3n_2+4n_3 =0</math> und daraus XYZXYZ. Wählt man z.B. <math>n_2=2</math>, so erhält man <math>n_1=2</math> und <math>n_3=1</math> und damit <math>\vec{n}=\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}</math>. Ansatz für die Koordinatengleichung: <math>E:2x_1+2x_2+x_3=d</math>. Man berechnet <math>d</math> indem man für <math>x_1, x_2</math> und <math>x_3</math> die Koordinaten des Stützvektors von E einsetzt: <math>d=2 \cdot 2 + 2 \cdot 1 + 1 \cdot 5=11</math>. Koordinatengleichung: <math>E:2x_1+2x_2+x_3=11</math>| Hervorhebung1}} | ||
{{Box | Aufgabe 15: Koordinatengleichung aus Parametergleichung | Bestimme eine Koordinatengleichung der Ebene <math>E: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}+ t \cdot \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}</math>. | Arbeitsmethode | Farbe={{Farbe|orange}} }} | {{Box | Aufgabe 15: Koordinatengleichung aus Parametergleichung | Bestimme eine Koordinatengleichung der Ebene <math>E: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}+ t \cdot \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}</math>. | Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
{{Box | Aufgabe 16: Parameter-, Normalen- und Koordinatengleichung | Die Ebene E ist durch die drei Punkte <math>A(7|2|-1)</math>, <math>B(4|1|3)</math>, <math>F(1|3|2)</math> festgelegt. Bestimme eine Parametergleichung, eine Normalengleichung und eine Koordinatengleichung der Ebene E. | Arbeitsmethode}} | {{Box | Aufgabe 16: Parameter-, Normalen- und Koordinatengleichung | Die Ebene E ist durch die drei Punkte <math>A(7|2|-1)</math>, <math>B(4|1|3)</math>, <math>F(1|3|2)</math> festgelegt. Bestimme eine Parametergleichung, eine Normalengleichung und eine Koordinatengleichung der Ebene E. | Arbeitsmethode}} |
Version vom 8. Mai 2021, 21:26 Uhr
Die Parameterform und die Punktprobe
Normalenform und Koordinatenform von Ebenengleichungen
Überführung der Parameterform in die Koordinatenform