Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Abstände von Objekten im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 29: | Zeile 29: | ||
A. <math>h:\vec{x}=\begin{pmatrix} 2 \\ 0 \\ 15 \end{pmatrix}+s\cdot\begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}</math> ist die zu <math>E: x_3=10</math> orthogonale Gerade durch einen Punkt von <math>g</math>. Wegen <math>15-3s=10</math>, also <math>s=\frac{5}{3}</math>, erhält man den Lotfußpunkt <math>(2|0|10)</math>. | A. <math>h:\vec{x}=\begin{pmatrix} 2 \\ 0 \\ 15 \end{pmatrix}+s\cdot\begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}</math> ist die zu <math>E: x_3=10</math> orthogonale Gerade durch einen Punkt von <math>g</math>. Wegen <math>15-3s=10</math>, also <math>s=\frac{5}{3}</math>, erhält man den Lotfußpunkt <math>(2|0|10)</math>. | ||
B. <math>h:\vec{x}\begin{pmatrix} 5 \\ -16 \\ 3 \end{pmatrix}+s\cdot\begin{pmatrix} -10 \\ -22 \\ 86 \end{pmatrix}</math> ist der allgemeine Verbindungsvektor von <math>P(30|22|-55)</math> zu einem Punkt <math>L</math> auf der Geraden <math>g:\vec{x}=\begin{pmatrix} 5 \\ -16 \\ 3 \end{pmatrix}+s\cdot\begin{pmatrix} 20 \\ 0 \\ 31 \end{pmatrix}</math> in Abhängigkeit vom Geradenparameter <math>s</math>. | B. <math>h:\vec{x}=\begin{pmatrix} 5 \\ -16 \\ 3 \end{pmatrix}+s\cdot\begin{pmatrix} -10 \\ -22 \\ 86 \end{pmatrix}</math> ist der allgemeine Verbindungsvektor von <math>P(30|22|-55)</math> zu einem Punkt <math>L</math> auf der Geraden <math>g:\vec{x}=\begin{pmatrix} 5 \\ -16 \\ 3 \end{pmatrix}+s\cdot\begin{pmatrix} 20 \\ 0 \\ 31 \end{pmatrix}</math> in Abhängigkeit vom Geradenparameter <math>s</math>. | ||
Damit <math>h</math> orthogonal zu <math>g</math> ist, muss <math>s=6,75</math> sein. | Damit <math>h</math> orthogonal zu <math>g</math> ist, muss <math>s=6,75</math> sein und <math>L</math> ist somit <math>(140|-16|212,25)</math>. | ||
C.<math>G(4|-10|19)</math> ist der Lotfußpunkt auf <math>g</math> und <math>H(-2|-12|22)</math> ist der Lotfußpunkt auf <math>h</math>. Der Abstand ist dann <math>d(g;h)=d(G;H)=\sqrt{(4-(-2))^2+(-10-(-12))^2+(22-19)^2}=\sqrt{36+4+9}=7</math>. | C.<math>G(4|-10|19)</math> ist der Lotfußpunkt auf <math>g</math> und <math>H(-2|-12|22)</math> ist der Lotfußpunkt auf <math>h</math>. Der Abstand ist dann <math>d(g;h)=d(G;H)=\sqrt{(4-(-2))^2+(-10-(-12))^2+(22-19)^2}=\sqrt{36+4+9}=7</math>. |
Version vom 7. Mai 2021, 12:23 Uhr
Einstieg
Die richtigen Zuordnungen sind:1-C, 2-A, 3-B
Abstand eines Punktes von einer Ebene
Das Lotfußpunktverfahren
Die Hesse´sche Normalenform
Um den Abstand zwischen einem Punkt und einer Ebene zu bestimmen, gibt es neben dem Lotfußpunktverfahren auch die Möglichkeit, dies mit der Hesse´schen Normalenform zu berechnen. In diesem Abschnitt lernst du, wie du die Normalenform aufstellst und sie zur Abstandsberechnung anwendest.
Falls du noch nicht genug hast, kannst du auch versuchen, die Aufgaben vom Lotfußpunktverfahren mit der Hesse´schen Normalenform zu lösen.
Abstand eines Punktes von einer Geraden
Abstand zweier windschiefer Geraden
Verschiebe die Punkte und so, dass die kürzeste Verbindungsstrecke zwischen den windschiefen Geraden und ist. Du kannst die Grafik mit deiner Maus drehen, um die Geraden aus anderen Perspektiven zu betrachten.