Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Marie (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 50: | Zeile 50: | ||
'''5. Schritt:''' Da sich die Ebene <math>E</math> und die Gerade <math>g</math> schneiden, kannst du den Schnittpunkt der beiden berechnen. Setze dafür den Parameter <math>r</math> in die Geradengleichung ein. <math> | '''5. Schritt:''' Da sich die Ebene <math>E</math> und die Gerade <math>g</math> schneiden, kannst du den Schnittpunkt der beiden berechnen. Setze dafür den Parameter <math>r</math> in die Geradengleichung ein. <math>\left( \begin{matrix} 2\\ 2\\ 2 \end{matrix} \right) + 1 \cdot \left( \begin{matrix} -1\\ -4\\ 0 \end{matrix} \right) = \left( \begin{matrix} 1\\ -2\\ 2 \end{matrix} \right) </math> | ||
| Hervorhebung1}} | | Hervorhebung1}} | ||
Zeile 69: | Zeile 69: | ||
|Arbeitsmethode}} | |Arbeitsmethode}} | ||
{{Box | Aufgabe <Nummer>: | {{Box | Aufgabe <Nummer>: Schatten eines Sonnensegels | | ||
Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math> A = \left( \begin{matrix} 9\\ -5\\ 7 \end{matrix} \right), B= \left( \begin{matrix} 6\\ -5\\ 7 \end{matrix} \right)</math> und <math> C = \left( \begin{matrix} 7\\ -10\\ 11 \end{matrix} \right) </math>. Die Terrasse wird modelliert durch die <math>x_1- x_2</math>-Ebene. Die Sonne scheint aus Richtung <math> S = \left( \begin{matrix} -2\\ -2\\ -10 \end{matrix} \right) </math>. In welchem Bereich hat Frau Meier nun Schatten? | Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math> A = \left( \begin{matrix} 9\\ -5\\ 7 \end{matrix} \right), B= \left( \begin{matrix} 6\\ -5\\ 7 \end{matrix} \right)</math> und <math> C = \left( \begin{matrix} 7\\ -10\\ 11 \end{matrix} \right) </math>. Die Terrasse wird modelliert durch die <math>x_1- x_2</math>-Ebene. Die Sonne scheint aus Richtung <math> S = \left( \begin{matrix} -2\\ -2\\ -10 \end{matrix} \right) </math>. In welchem Bereich hat Frau Meier nun Schatten? | ||
{{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | {{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1= Der Schatten liegt auf der <math> x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x\\ y\\ 0 \end{matrix} \right) </math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1= Der Schatten liegt auf der <math> x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x\\ y\\ 0 \end{matrix} \right) </math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1= |2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1= '''1. Schritt:''' Geradengleichung durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen: | ||
<math> a: \vec{x}=\left( \begin{matrix} 9\\ -5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ -2\\ -10 \end{matrix} \right), b: \vec{x}=\left( \begin{matrix} 6\\ -5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ -2\\ -10 \end{matrix} \right) </math> und <math> c: \vec{x}=\left( \begin{matrix} 7\\ -10\\ 11 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ -2\\ 10 \end{matrix} \right) </math>. |2=Lösung anzeigen|3=Lösung verbergen}} | |||
| Arbeitsmethode}} | | Arbeitsmethode}} | ||
Version vom 7. Mai 2021, 07:45 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
{{Box | Aufgabe <Nummer>: Gerade gesucht |
Eine Gerade soll die in einem Winkel von schneiden. Über die Gerade ist nur bekannt, dass sie im Punkt beginnt und sie in Richtung des Vektors verläuft. Stelle die Gerade auf.
Inhalt
Inhalt
Arbeitsmethode
Lagebeziehung Ebene-Ebene
⭐Berechnung des Winkels zwischen Ebene und Ebene