Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 226: | Zeile 226: | ||
{{Box | Merksatz: <Name> | Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>n</math> und <math>m</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math> cos(\alpha)=\frac{ n \ast m}{|n| \cdot |m|}</math>| Merksatz}} | {{Box | Merksatz: <Name> | Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>n</math> und <math>m</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math> cos(\alpha)=\frac{ n \ast m}{|n| \cdot |m|}</math>| Merksatz}} | ||
{{Box | Beispiel: Winkel berechnen zwischen zwei Ebenen | | {{Box | Beispiel: Winkel berechnen zwischen zwei Ebenen | Gegeben sind zwei Ebenen <math>E</math> und <math>F</math> mit <math>E: \vec{x}=</math> | Hervorhebung1}} | ||
{{Box | Aufgabe <Nummer>: Fehlerbeschreibung | Inhalt | Arbeitsmethode | Farbe={{Farbe|orange}} }} | {{Box | Aufgabe <Nummer>: Fehlerbeschreibung | Inhalt | Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
Zeile 232: | Zeile 232: | ||
{{Box | Aufgabe <Nummer>: Bank am Wanderweg | | {{Box | Aufgabe <Nummer>: Bank am Wanderweg | | ||
An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math> S_1: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0,5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0,4 \\ 0\end{pmatrix}, r,s \in \mathbb{R} </math> und die Rückenlehne durch die Ebene <math>R_1: -x_2 + 0,4 x_3 = -0,2 </math> beschrieben werden kann. | An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math> S_1: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0{,}4 \\ 0\end{pmatrix}, r,s \in \mathbb{R} </math> und die Rückenlehne durch die Ebene <math>R_1: -x_2 + 0{,}4 x_3 = -0,2 </math> beschrieben werden kann. | ||
'''a)''' Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen 100 und 110 liegen. Überprüfe, ob die auf die neue Bank zutrifft. | '''a)''' Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen 100 und 110 liegen. Überprüfe, ob die auf die neue Bank zutrifft. | ||
Zeile 240: | Zeile 240: | ||
{{Lösung versteckt|1=Überlege genau, welchen Winkel du berechnet hast. Vielleicht kann dir eine Skizze helfen. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1=Überlege genau, welchen Winkel du berechnet hast. Vielleicht kann dir eine Skizze helfen. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1=Als Normalenvektor der Ebene <math>S_1</math> erhält man <math> \vec{n}=\begin{pmatrix} 0 \\ 0 \\ 0,8 \end{pmatrix} </math> und als Normalenvektor der Ebene <math>R_1 </math> <math>\vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0,4 \end{pmatrix} </math> . | {{Lösung versteckt|1=Als Normalenvektor der Ebene <math>S_1</math> erhält man <math> \vec{n}=\begin{pmatrix} 0 \\ 0 \\ 0{,}8 \end{pmatrix} </math> und als Normalenvektor der Ebene <math>R_1 </math> <math>\vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix} </math> . | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
<math> cos(\gamma)=\frac{ | \left( \begin{matrix} 0\\ 0\\ 0,8 \end{matrix} \right) \ast \left( \begin{matrix} 0\\ -1\\ 0,4 \end{matrix} \right)|}{|\left( \begin{matrix} 0\\ 0\\ 0,8 \end{matrix} \right)| \cdot | \left( \begin{matrix} 0\\ -1\\ 0,4 \end{matrix} \right)|} \Leftrightarrow cos(\gamma)=\frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} </math> | <math> cos(\gamma)=\frac{ | \left( \begin{matrix} 0\\ 0\\ 0{,}8 \end{matrix} \right) \ast \left( \begin{matrix} 0\\ -1\\ 0{,}4 \end{matrix} \right)|}{|\left( \begin{matrix} 0\\ 0\\ 0{,}8 \end{matrix} \right)| \cdot | \left( \begin{matrix} 0\\ -1\\ 0{,}4 \end{matrix} \right)|} \Leftrightarrow cos(\gamma)=\frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} </math> | ||
Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68,2 ^\circ </math> | Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2 ^\circ </math> | ||
[[Datei:Winkel zwischen zwei Ebenen (Bankaufgabe).png|mini|Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank]] | [[Datei:Winkel zwischen zwei Ebenen (Bankaufgabe).png|mini|Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank]] | ||
Wie in Abbildung ... zu sehen wurde der Winkel <math> \gamma </math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math> \alpha </math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180 ^\circ - \gamma </math> berechnet: <math>180 ^\circ - 68,2 ^\circ = 111,8 ^\circ </math>. Mit einem Wert von <math> 111,8 ^\circ </math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | Wie in Abbildung ... zu sehen wurde der Winkel <math> \gamma </math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math> \alpha </math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180 ^\circ - \gamma </math> berechnet: <math>180 ^\circ - 68{,}2 ^\circ = 111{,}8 ^\circ </math>. Mit einem Wert von <math> 111{,}8 ^\circ </math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''b)''' Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche entspricht der Ebene <math> S_2: \vec{x} = \begin{pmatrix} 0 \\ 0,8 \\ 0,5 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0,4 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0 \\ 0\end{pmatrix}, r,s \in \mathbb{R}</math> und die Rückenlehne der Ebene <math> R_2: -x_2 - 0,4 x_3 = -1 </math> Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen. | '''b)''' Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche entspricht der Ebene <math> S_2: \vec{x} = \begin{pmatrix} 0 \\ 0,8 \\ 0,5 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0,4 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0 \\ 0\end{pmatrix}, r,s \in \mathbb{R}</math> und die Rückenlehne der Ebene <math> R_2: -x_2 - 0{,}4 x_3 = -1 </math> Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen. | ||
{{Lösung versteckt|1=Gesucht ist der Winkel zwischen der Ebene <math>R_1</math> und der Ebene <math>R_2</math>. Nutze zur Berechnung die Normalenvektoren der Ebenen. [[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]]|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1=Gesucht ist der Winkel zwischen der Ebene <math>R_1</math> und der Ebene <math>R_2</math>. Nutze zur Berechnung die Normalenvektoren der Ebenen. [[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]]|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
Zeile 259: | Zeile 259: | ||
[[Datei:Aufgabe Bank (4).png|mini|Skizze: Winkel zwischen den beiden Bänken am Wanderweg]] | [[Datei:Aufgabe Bank (4).png|mini|Skizze: Winkel zwischen den beiden Bänken am Wanderweg]] | ||
Die Normalenvektoren der Ebenen lauten <math> \vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0,4 \end{pmatrix} </math> und <math> \vec{l}=\begin{pmatrix} 0 \\ -1 \\ -0,4 \end{pmatrix} </math>. | Die Normalenvektoren der Ebenen lauten <math> \vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix} </math> und <math> \vec{l}=\begin{pmatrix} 0 \\ -1 \\ -0{,}4 \end{pmatrix} </math>. | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
<math> cos(\beta)=\frac{ | \left( \begin{matrix} 0\\ -1\\ 0,4 \end{matrix} \right) \ast \left( \begin{matrix} 0\\ -1\\ -0,4 \end{matrix} \right)|}{|\left( \begin{matrix} 0\\ -1\\ 0,4 \end{matrix} \right)| \cdot | \left( \begin{matrix} 0\\ -1\\ -0,4 \end{matrix} \right)|} \Leftrightarrow cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow cos(\bata)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow cos(\beta)=\frac{21}{29}</math> | <math> cos(\beta)=\frac{ | \left( \begin{matrix} 0\\ -1\\ 0{,}4 \end{matrix} \right) \ast \left( \begin{matrix} 0\\ -1\\ -0{,}4 \end{matrix} \right)|}{|\left( \begin{matrix} 0\\ -1\\ 0{,}4 \end{matrix} \right)| \cdot | \left( \begin{matrix} 0\\ -1\\ -0{,}4 \end{matrix} \right)|} \Leftrightarrow cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow cos(\bata)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow cos(\beta)=\frac{21}{29}</math> | ||
Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43,6 ^\circ </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43,6 ^\circ </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6 ^\circ </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6 ^\circ </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode}} | | Arbeitsmethode}} |
Version vom 6. Mai 2021, 20:05 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Basiswissen
⭐Berechnung des Winkels zwischen Ebene und Ebene