Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 71: | Zeile 71: | ||
{{Box | Aufgabe <Nummer>: Schattenpunkt einer Pyramide | | {{Box | Aufgabe <Nummer>: Schattenpunkt einer Pyramide | | ||
Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math> A = \left( \begin{matrix} 9\\ -5\\ 7 \end{matrix} \right), B= \left( \begin{matrix} 6\\ -5\\ 7 \end{matrix} \right)</math> und <math> C = \left( \begin{matrix} 7\\ -10\\ 11 \end{matrix} \right) </math>. Die Terrasse wird modelliert durch die <math>x_1- x_2</math>-Ebene. Die Sonne scheint aus Richtung <math> S = \left( \begin{matrix} -2\\ -2\\ -10 \end{matrix} \right) </math>. In welchem Bereich hat Frau Meier nun Schatten? | Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math> A = \left( \begin{matrix} 9\\ -5\\ 7 \end{matrix} \right), B= \left( \begin{matrix} 6\\ -5\\ 7 \end{matrix} \right)</math> und <math> C = \left( \begin{matrix} 7\\ -10\\ 11 \end{matrix} \right) </math>. Die Terrasse wird modelliert durch die <math>x_1- x_2</math>-Ebene. Die Sonne scheint aus Richtung <math> S = \left( \begin{matrix} -2\\ -2\\ -10 \end{matrix} \right) </math>. In welchem Bereich hat Frau Meier nun Schatten? | ||
{{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | {{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1= Der Schatten liegt auf der <math> x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x\\ y\\ 0 \end{matrix} \right) </math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | |||
{{Lösung versteckt|1= |2=Lösung anzeigen|3=Lösung verbergen}} | |||
| Arbeitsmethode}} | | Arbeitsmethode}} | ||
Version vom 6. Mai 2021, 16:59 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Basiswissen
⭐Berechnung des Winkels zwischen Ebene und Ebene