Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 90: | Zeile 90: | ||
{{Lösung versteckt|1=Damit die Gerade <math>g</math> und die Ebene <math>E</math> parallel zueinander sind, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp anzeigen|3=Tipp verbergen}} | {{Lösung versteckt|1=Damit die Gerade <math>g</math> und die Ebene <math>E</math> parallel zueinander sind, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp anzeigen|3=Tipp verbergen}} | ||
{{Lösung versteckt|1= <math> \vec{u} \circ \vec{n} = \left( \begin{matrix} 0,5\\ 3\\ m \end{matrix} \right) \circ \left( \begin{matrix} -2\\ 3\\ -1 \end{matrix} \right) = 8-m </math>. Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 8-m = 0 \Rightarrow m = 8 </math>|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1= <math> \vec{u} \circ \vec{n} = \left( \begin{matrix} 0,5\\ 3\\ m \end{matrix} \right) \circ \left( \begin{matrix} -2\\ 3\\ -1 \end{matrix} \right) = 8-m </math>. | ||
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 8-m = 0 \Rightarrow m = 8 </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | |||
b) Die Gerade <math> | b) Die Gerade <math> h: \vec{x} = \left( \begin{matrix} l\\ 5,1\\ 0,4 \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ m\\ 3,6 \end{matrix} \right) </math> soll in der Ebene <math> E </math> liegen. | ||
c) Die Gerade <math> | {{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, muss der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1= Wenn die Gerade <math>g</math> in der Ebene <math>E</math> liegt, liegt jeder Punkt auf der Gerade <math>g</math> auch in der Ebene <math>E</math>. Prüfe mit der Punktprobe, ob der Stützvektor von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | |||
{{Lösung versteckt|1= Finde zuerst m: <math> \vec{u} \circ \vec{n} = \left( \begin{matrix} 3\\ m\\ 3,6 \end{matrix} \right) \circ \left( \begin{matrix} -2\\ 3\\ -1 \end{matrix} \right) = 3m - 9,6 </math>. Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 3m - 9,6 = 0 \Rightarrow m = 3,2 </math>. | |||
Finde danach l durch eine Punktprobe: Setze <math> \vec(a) = \left( \begin{matrix} l\\ 5,1\\ 0,4 \end{matrix} \right) </math> in die Ebenengleichung ein und löse nach l auf: <math> -2l + 3 \cdot 5,1 - 0,4 = 3 \Leftrightarrow l = 5,95</math>. |2=Lösung anzeigen|3=Lösung verbergen}} | |||
c) Die Gerade <math> i: \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} -3\\ 5\\ -1 \end{matrix} \right) </math> soll die Ebene <math> E </math> schneiden. | |||
|Arbeitsmethode}} | |Arbeitsmethode}} | ||
Version vom 6. Mai 2021, 14:09 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Basiswissen
⭐Berechnung des Winkels zwischen Ebene und Ebene