Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 88: | Zeile 88: | ||
===⭐Berechnung des Winkels zwischen Gerade und Ebene=== | ===⭐Berechnung des Winkels zwischen Gerade und Ebene=== | ||
[[Datei:Abbildung- Winkel zwischen Gerade und Ebene.jpg|mini|602x602px|Abbildung 1: Winkel zwischen Gerade und Ebene]] | |||
{{Box | | {{Box | Erklärung: Winkel berechnen zwischen einer Gerade und einer Ebene | | ||
Wenn sich eine | Wenn sich eine Gerade und eine Ebene schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Wie in Abbildung 1 zu sehen ist, kannst du dazu den Normalenvektor der Ebene betrachten. Wenn du nicht mehr genau weißt, was der Normalenvektor ist und wie man ihn berechnen kann, schaue nochmal in Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]] | ||
Man erhält den Schnittwinkel <math>\beta</math> zwischen der Gerade und der Ebene, indem man den Winkel <math>\alpha</math> zwischen dem Normalenvektor der Ebene und dem Richtungsvektor der Gerade berechnet mithilfe der Kosinusfunktion berechnet und von 90° abzieht. Einfacher ist die Rechnung aber, wenn man die Sinusfunktion benutzt. | |||
| Merksatz}} | |||
{{Box | Merksatz: Winkel berechnen zwischen Gerade und Ebene | Sei <math>E</math> eine Ebene mit dem Normalenvektor <math>n</math> und <math>g</math> eine Gerade mit dem Richtungsvektor <math>u</math>. Der Schnittwinkel <math>\ | {{Box | Merksatz: Winkel berechnen zwischen Gerade und Ebene | Sei <math>E</math> eine Ebene mit dem Normalenvektor <math>n</math> und <math>g</math> eine Gerade mit dem Richtungsvektor <math>u</math>. Der Schnittwinkel <math>\beta</math> zwischen <math>E</math> und <math>g</math> kann mit folgender Formel berechnet werden: <math> sin(\beta)=\frac{ n \ast u}{|n| \cdot |u|}</math> | Merksatz}} | ||
{{Box | Beispiel: | |||
{{Box | Beispiel: Berechnen des Winkels zwischen Gerade und Ebene | | |||
Gegeben sind die Gerade <math>g: \vec{x}=\left( \begin{matrix} -1\\ 3\\ 6 \end{matrix} \right) + r \cdot \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und die Ebene <math>E: 2x_1 + x_2 + 4 x_3 = -27 </math>. Bestimme den Winkel unter dem sich die Gerade <math>g</math> und die Ebene <math>E</math> schneiden. | |||
'''1. Schritt''': Notiere den Richtungvektor <math> \vec{u} </math> der Gerade und den Normalenvektor <math> \vec{n} </math> der Ebene. | '''1. Schritt''': Notiere den Richtungvektor <math> \vec{u} </math> der Gerade und den Normalenvektor <math> \vec{n} </math> der Ebene. | ||
Zeile 101: | Zeile 105: | ||
<math> \vec{u}= \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und <math> \vec{n}= \left( \begin{matrix} 2\\ 1\\ 4 \end{matrix} \right) </math>. | <math> \vec{u}= \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und <math> \vec{n}= \left( \begin{matrix} 2\\ 1\\ 4 \end{matrix} \right) </math>. | ||
'''2. Schritt''': Einsetzen der Vektoren in die Formel <math> sin(\ | '''2. Schritt''': Einsetzen der Vektoren in die Formel <math> sin(\beta)=\frac{ \vec{n} \ast \vec{u}}{|\vec{n}| \cdot |\vec{u}|}</math>. | Hervorhebung1}} | ||
{{Box | Aufgabe <Nummer>: <Name> | Inhalt | Arbeitsmethode}} | {{Box | Aufgabe <Nummer>: <Name> | Inhalt | Arbeitsmethode}} | ||
{{Box | Aufgabe <Nummer>: Winkel gesucht | Inhalt | Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }} | {{Box | Aufgabe <Nummer>: Winkel gesucht | Inhalt | Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }} | ||
==Lagebeziehung Ebene-Ebene== | ==Lagebeziehung Ebene-Ebene== |
Version vom 5. Mai 2021, 16:52 Uhr
dHier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Basiswissen
⭐Berechnung des Winkels zwischen Ebene und Ebene