Digitale Werkzeuge in der Schule/Fit für VERA-8/Zinsrechnung/Zinsformel: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 105: Zeile 105:
| Arbeitsmethode | Farbe={{Farbe|orange}} }}
| Arbeitsmethode | Farbe={{Farbe|orange}} }}


{{Box | Aufgabe 2: Vergleich Zinsen mit Linearem Wachstum | Hier ist ein Diagramm von der Entwicklung von Claras Kontostand aus dem Beispiel für <math>50</math> Jahre dargestellt.  
{{Box | Aufgabe 2: Vergleich Zinsen mit Linearem Wachstum | Sipan hat ein Sparschwein. Er legt jedes Jahr immer 5 Euro in dieses Sparschwein. Seine Schwester Esma legt ihr Geld bei einer Bank an, wo sie 2% Zinsen im Jahr bekommt.
Ein Graph stellt die Entwicklung ohne Zinsen dar.  
Ein Graph stellt die Entwicklung nur mit einfachen Zinsen , ohne Zinseszins dar.
Ein Graph stellt die Entwicklung mit Zinseszins dar.


'''a)''' Ordne die Graphen den verschiedenen Entwicklungen zu.
'''a)''' Beide starten mit <math>250</math> Euro Erspartem. Berechne wieviel Geld sie jeweils nach zwei Jaren auf ihrem Konto haben.


{{Lösung versteckt|1= Gehe Schrittweise vor. Berechne bei beiden zuerst das Geld nach einem Jahr und dann nach zwei Jahren.|2=kleiner Tipp zu Aufgabe 2 a) |3=Einklappen}}


{{Lösung versteckt|1= Sipan wird in zwei Jahren <math>10</math> Euro zu seinem Ersparten legen. Er besitzt dann also <math>260</math> Euro. Esma bekommt im ersten Jahr <math>5</math> Euro Zinsen und im zweiten Jahr <math>5{,}10</math> Euro Zinsen. Also hat sie nach zwei Jahren <math>260,10</math> Euro auf ihrem Konto.|2=Lösung zu 2 a)|3=Einklappen}}


'''b)''' Was fällt dir bei der Betrachtung der verschiedenen Verläufe der Graphen auf? Was bedeuten diese Auffäligkeiten für Claras Konostand?
'''b)''' Fallen dir Vorteile der beiden Sparmethoden von Sipan und Esma ein?
{{Lösung versteckt|1= Hier musst du nicht rechnen. Überlege dir zum Beispiel was auf kurze oder lange Sicht passiert und was der Unterschied zwischen einem Sparschwein und einem Konto ist.|2=kleiner Tipp zu Aufgabe 2 b) |3=Einklappen}}
 
{{Lösung versteckt|1= Ein Sparschwein ist immer verfügbar. Wenn Sipan dringend Geld braucht, kann er sein Sparschwein schnell plündern. Auf lange Sicht ist das Sparkonto von Esma aber die klügere Wahl, da sie nicht nur den gleichen Betrag bekommt, sondern immer mehr Geld. Das rechnet sich auf lange Sicht.|2=Lösung zu 2 b)|3=Einklappen}}
| Arbeitsmethode}}
| Arbeitsmethode}}

Version vom 20. November 2020, 11:21 Uhr

Info

In diesem Kapitel geht es um die Zinsformel. Die Zinsformel hilft dir die einmaligen Zinsen ohne weitere Komplikationen zu berechnen.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende

Kompetenzen wiederholen und vertiefen.

  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
  • Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!

Prozentformel und Zinsformel

Zinsen zu berechnen ist eigentlich einfach nur Prozentrechnung - mit etwas anderen Namen. Die Formel aus der Prozentrechnung kennst du ja schon:

.

Dabei ist der Prozentwert, der Grundwert und die Prozentzahl. Möchtest du zum Beispiel wissen, was Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle 3%} von 250g Mehl sind, rechnest du das mit genau dieser Formel aus:


.


In der Zinsrechnung berechnen wir nun ebenfalls die Prozente von einem bestimmten Geldbetrag. Statt Prozent sagen wir also Zinssatz und anstelle von Grundwert sprechen wir nun von Kapital. Zuletzt sind die Zinsen dann der Prozentwert. Statt die aufwändigen Worte kürzen wir diese Begriffe nun wie in der Mathematik üblich mit eine, Buchstaben ab:

Dabei sind die Zinsen, das Kapital und der Zinssatz. Als Formel ergibt sich somit:

.

Beispielaufgabe mit Lösung

Probieren wir die doch mal zusammen aus anhand einem Beispiel:


Beispiel
Katharina hat zum Geburtstag ein Sparkonto bekommen. Dort bekommt sie in einem Jahr Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle 1%} Zinsen gezahlt. Sie zahlt direkt all ihr Geburtstagsgeld von Euro auf das Sparkonto. Wieviel Geld hat sie an ihrem nächsten Geburtstag auf diesem Konto?

Lösung:

Gegeben: K = Euro, z = Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle 1%} .

Gesucht: Z und Kapital nach einem Jahr.

Rechnung: . Nach einem Jahr hat sie demnach auf dem Konto.

Antwort: Katharina hat an ihrem nächsten Geburtstag Euro auf dem Konto.

Das geht sogar noch schneller

In der Beispielaufgabe haben wir am Ende das Kapital noch mit den Zinsen verrechnet. Das können wir auch direkt in einer einzelnen Rechnung machen:


.

.

.

.

.


.

.

Probieren wir diese Formel doch direkt mal aus mit und Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle z=1%} aus der Beispielaufgabe aus.

. Es geht auf!

Aufgaben

Aufgabe 1: Rechnen mit Zinsen
Katharina hat nun  auf ihrem Konto. Sie bekommt zwei Angebote von Banken. Bank A bietet ihr 2% Zinsen in einem Jahr, Bank B bietet ihr 1% Zinsen in einem halben Jahr.

a) Wieviel Geld hat Katharina bei Bank A nach einem Jahr auf dem Konto?

Benutze die Zinsformel, welche du gerade gelernt hast.
Überleg dir zuerst, was und ist.
Es ist und . Nun benutze die Formel von oben
Katharina bekommt bei Bank A in einem Jahr Euro Zinsen. Also hat sie dann ein Kapital von Euro auf ihrem Konto.

b) Wieviel Geld hätte Katharina nach einem halben Jahr bei Bank B auf dem Konto?

Das geht genau so wie in Aufgage a).
Rechne mit und .
Katharina bekommt in einem halben Jahr bei Bank B Euro Zinsen. Damit hat sie ein Kapital von Euro auf ihrem Konto.

c) Nach eine halben Jahr hat Katharina nun Euro auf ihrem Konto. Wieviel Geld hat sie ein weiteres halbes Jahr später?

Verfahre genauso wie in b).
Bedenke, dass sich im Unterschied zu b) nun verändert hat.
Katharina bekommt für ein weiteres halbes Jahr insgesamt Euro Zinsen. Sie hat also Euro auf ihrem Konto.

d) Was fällt dir im Vergleich der beiden Agebote auf?

Ist ein Angebot besser?
Überlege, ob sich die Zinsen mit der Zeit verändern oder immer gleich bleiben.
Das Angebot von Bank B ist besser. Es klingt zwar so, als seien beide Angebote gleich, aber da sich nach jedem auszahlen der Zinsen auch vergrößert, werden die Zinsen auch größer. Nach zweimal auszahlen hat Katharina daher etwas mehr Geld auf ihrem Konto.


Aufgabe 2: Vergleich Zinsen mit Linearem Wachstum
Sipan hat ein Sparschwein. Er legt jedes Jahr immer 5 Euro in dieses Sparschwein. Seine Schwester Esma legt ihr Geld bei einer Bank an, wo sie 2% Zinsen im Jahr bekommt.

a) Beide starten mit Euro Erspartem. Berechne wieviel Geld sie jeweils nach zwei Jaren auf ihrem Konto haben.

Gehe Schrittweise vor. Berechne bei beiden zuerst das Geld nach einem Jahr und dann nach zwei Jahren.
Sipan wird in zwei Jahren Euro zu seinem Ersparten legen. Er besitzt dann also Euro. Esma bekommt im ersten Jahr Euro Zinsen und im zweiten Jahr Euro Zinsen. Also hat sie nach zwei Jahren Euro auf ihrem Konto.

b) Fallen dir Vorteile der beiden Sparmethoden von Sipan und Esma ein?

Hier musst du nicht rechnen. Überlege dir zum Beispiel was auf kurze oder lange Sicht passiert und was der Unterschied zwischen einem Sparschwein und einem Konto ist.
Ein Sparschwein ist immer verfügbar. Wenn Sipan dringend Geld braucht, kann er sein Sparschwein schnell plündern. Auf lange Sicht ist das Sparkonto von Esma aber die klügere Wahl, da sie nicht nur den gleichen Betrag bekommt, sondern immer mehr Geld. Das rechnet sich auf lange Sicht.