Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 231: | Zeile 231: | ||
|1= | |1= | ||
Leon möchte aus einem kreisförmigen Stück Papier eine Pommestüte formen, in | Leon möchte aus einem kreisförmigen Stück Papier eine Pommestüte formen, in die möglichst viele Pommes hineinpassen. Zu optimieren ist also das Volumen <math> V(r,h)=\frac{1}{3} \cdot\pi\cdot r^2 h </math> der Pommestüte. | ||
Rollt Leon das Stück Papier nicht, so | Rollt Leon das Stück Papier nicht, so ist das Volumen <math>V = 0</math>. Rollt Leon das Stück Papier ganz zusammen, so ist <math>s = h = 10</math>. | ||
Gegeben ist die Mantellinie mit <math> s=10 </math> der Pommestüte. Außerdem ist das Volumen der Pommestüte von den Variablen <math> r </math>(Radius) und <math> h </math>(Höhe) abhängig. Mit dem Satz des Pythagoras ergibt sich <math> r^2 + h^2 = 10^2 </math>. Stelle diese Gleichung nun nach <math> r </math> um und erhalte <math> r^2 = 100 - h^2 </math>. | Gegeben ist die Mantellinie mit <math> s=10 </math> der Pommestüte. Außerdem ist das Volumen der Pommestüte von den Variablen <math> r </math>(Radius) und <math> h </math>(Höhe) abhängig. Mit dem Satz des Pythagoras ergibt sich <math> r^2 + h^2 = 10^2 </math>. Stelle diese Gleichung nun nach <math> r </math> um und erhalte <math> r^2 = 100 - h^2 </math>. |
Version vom 12. Juni 2020, 09:28 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Optimierungsproblemen
Gegeben ist die Länge der Laufbahn um den Sportplatz herum, also der Umfang des Sportplatzes. Maximiert werden soll die Größe des Fussballfeldes, also der rechteckige Flächeninhalt innerhalb des Sportplatzes. Überlege also zunächst, wie der Flächeninhalt berechnet wird.
Über die Größen selbst weißt du ebenfalls etwas durch den Umfang: . Stelle die Formel für den Umfang nun nach um.
Setze nun deine Formel für in den Flächeninhalt ein. So erhälst du deine Zielfunktion.
Deine Zielfunktion ist:
Für die Zielfunktion kann nur zwischen und liegen, also
Nun musst du den optimalen Wert berechnen. Gesucht ist hier das Maximum. Bilde dazu die Ableitungen:
Prüfe nun die notwendige und hinreichende Bedingung.
Mit der notwendigen Bedingung erhälst du dann .
Mit der hinreichenden Bedingung folgt , somit erfüllt alle Bedingungen.Berechne nun .
Der Flächeninhalt des Fussballfeldes wird also für eine Breite von m und eine Höhe von m maximal.
Berechne nun durch Einsetzen von und den Flächeninhalt :
Der Flächeninhalt wird also auf m maximiert.
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen