Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 265: | Zeile 265: | ||
Gegeben ist der Graph einer Funktion <math>g</math> mit | Gegeben ist der Graph einer Funktion <math>g</math> mit | ||
<math>g(x)=(x-3)^2+2{,}5</math> im Intervall <math>[0{,}3]</math>. | <math>g(x)=(x-3)^2+2{,}5</math> im Intervall <math>[0{,}3]</math>. | ||
Ein achsenparalleles Rechteck wird so gelegt, dass ein Eckpunkt der Koordinatenursprung ist und der gegenüberliegende Eckpunkt A auf dem Graphen von g liegt. | Ein achsenparalleles Rechteck wird so gelegt, dass ein Eckpunkt der Koordinatenursprung ist und der gegenüberliegende Eckpunkt A auf dem Graphen von <math>g</math> liegt. | ||
Welches der möglichen Rechtecke hat den größten Flächeninhalt? | Welches der möglichen Rechtecke hat den größten Flächeninhalt? | ||
Zeile 277: | Zeile 277: | ||
Den Flächeninhalt von einem Rechteck bestimmst du, indem du die Breite mit der Länge multiplizierst. Den Flächeninhalt geben wir durch <math>A(x,y)</math> an. Es gilt also <math> A(x,y) = x*y </math> | Tipp zur Berechnung des Flächeninhaltes | Tipp verbergen }} | Den Flächeninhalt von einem Rechteck bestimmst du, indem du die Breite mit der Länge multiplizierst. Den Flächeninhalt geben wir durch <math>A(x,y)</math> an. Es gilt also <math> A(x,y) = x*y </math> | Tipp zur Berechnung des Flächeninhaltes | Tipp verbergen }} | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Als Nebenbedingung eignet sich die Funktion <math>g(x)=(x-3)^2 + 2,5</math>. | Als Nebenbedingung eignet sich die Funktion <math>g(x)=(x-3)^2 + 2{,}5</math>. | ||
Das liegt daran, dass ein Eckpunkt im Koordinatenursprung liegt. Somit wird die Länge des Rechteckes durch den Funktionswert an der Stelle <math>x</math> bestimmt. | Das liegt daran, dass ein Eckpunkt im Koordinatenursprung liegt. Somit wird die Länge des Rechteckes durch den Funktionswert an der Stelle <math>x</math> bestimmt. | ||
Die Nebenbedingung <math>g(x)</math> wird in <math>A(x,y)=x*y</math> für <math>y</math> eingesetzt. | Tipp für eine geeignete Nebenbedingung | Tipp verbergen }} | Die Nebenbedingung <math>g(x)</math> wird in <math>A(x,y)=x*y</math> für <math>y</math> eingesetzt. | Tipp für eine geeignete Nebenbedingung | Tipp verbergen }} | ||
Zeile 284: | Zeile 284: | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
1= | 1= | ||
Mit <math>x,y</math> in | Mit <math>x,y</math> in cm berechnen wir den Flächeninhalt mit der Funktion <math>A(x,y)=x*y</math>. | ||
Die Nebenbedingung ist die angegebene Funktion <math> | Die Nebenbedingung ist die angegebene Funktion <math>g(x)=(x-3)^2+2{,}5</math>. Da ein Eckpunkt im Koordinatenursprung liegt, wird die Länge des Rechteckes durch den Funktionswert an der Stelle <math>x</math> angegeben. | ||
Setzt man nun die Nebenbedingung in die Funktion <math>A(x,y)</math> ein, so erhalten wir <math>A(x)=x^3-6x^2+11x</math>. Die Funktion heißt nun <math>A(x)</math>, da sie nur noch von der Unbekannte <math>x</math> abhängt. | Setzt man nun die Nebenbedingung in die Funktion <math>A(x,y)</math> ein, so erhalten wir <math>A(x)=x^3-6x^2+11x</math>. Die Funktion heißt nun <math>A(x)</math>, da sie nur noch von der Unbekannte <math>x</math> abhängt. | ||
Zeile 299: | Zeile 299: | ||
Der Flächeninhalt ist also am größten, wenn der zweite Eckpunkt des achsenparallelen Rechteckes an die Stelle <math>x=3</math> gelegt wird. Der Flächeninhalt beträgt dann <math>7{,} | Der Flächeninhalt ist also am größten, wenn der zweite Eckpunkt des achsenparallelen Rechteckes an die Stelle <math>x=3</math> gelegt wird. Der Flächeninhalt beträgt dann <math>7{,}5</math>cm^2. | ||
|2=Lösung |3=Lösung verbergen }} | |2=Lösung |3=Lösung verbergen }} | ||
Version vom 27. Mai 2020, 12:42 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Optimierungsproblemen
Gegeben ist die Länge der Laufbahn um den Sportplatz herum, also der Umfang des Sportplatzes. Maximiert werden soll die Größe des Fussballfeldes, also der rechteckige Flächeninhalt innerhalb des Sportplatzes. Überlege also zunächst, wie der Flächeninhalt berechnet wird.
Über die Größen selbst weißt du ebenfalls etwas durch den Umfang: . Stelle die Formel für den Umfang nun nach um.
Setze nun deine Formel für in den Flächeninhalt ein. So erhälst du deine Zielfunktion.
Deine Zielfunktion ist:
Für die Zielfunktion kann nur zwischen und liegen, also
Nun musst du den optimalen Wert berechnen. Gesucht ist hier das Maximum. Bilde dazu die Ableitungen:
Prüfe nun die notwendige und hinreichende Bedingung.
Mit der notwendigen Bedingung erhälst du dann .
Mit der hinreichenden Bedingung folgt , somit erfüllt alle Bedingungen.Berechne nun .
Der Flächeninhalt des Fussballfeldes wird also für eine Breite von und eine Höhe von maximal.
Berechne nun durch Einsetzen von und den Flächeninhalt :
Der Flächeninhalt wird also auf maximiert.
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen