Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Lara (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Lara (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 231: | Zeile 231: | ||
Mit <math>x,y</math> in <math>cm</math> berechnen wir den Flächeninhalt mit der Funktion <math>A(x,y)=x*y</math>. | Mit <math>x,y</math> in <math>cm</math> berechnen wir den Flächeninhalt mit der Funktion <math>A(x,y)=x*y</math>. | ||
Die Nebenbedingung ist die angegebene Funktion <math>f(x)=f(x)=(x-3)^2+2,5</math>. | Die Nebenbedingung ist die angegebene Funktion <math>f(x)=f(x)=(x-3)^2+2{,}5</math>. | ||
Setzt man nun die Nebenbedingung in die Funktion <math>A(x,y)</math> ein, so erhalten wir <math>A(x)=x^3-6x^2+11x</math>. Die Funktion heißt nun <math>A(x)</math>, da sie nur noch von der Unbekannte <math>x</math> abhängt. | Setzt man nun die Nebenbedingung in die Funktion <math>A(x,y)</math> ein, so erhalten wir <math>A(x)=x^3-6x^2+11x</math>. Die Funktion heißt nun <math>A(x)</math>, da sie nur noch von der Unbekannte <math>x</math> abhängt. | ||
Nun lässt sich mit Hilfe der notwendigen Bedingung <math>A'(x)=0</math> und der hinreichenden Bedingung für Hochpunkte <math>A''(x) < 0 </math> die Stelle des lokalen Hochpunktes bestimmen. Anschließend setzen wir <math>x</math> in die Ausgangsfunktion <math>A(x)</math> ein und erhalten nun den lokalen Hochpunkt <math>HP(1,59|7,14)</math>. | Nun lässt sich mit Hilfe der notwendigen Bedingung <math>A'(x)=0</math> und der hinreichenden Bedingung für Hochpunkte <math>A''(x) < 0 </math> die Stelle des lokalen Hochpunktes bestimmen. Anschließend setzen wir <math>x</math> in die Ausgangsfunktion <math>A(x)</math> ein und erhalten nun den lokalen Hochpunkt <math>HP(1{,}59|7{,}14)</math>. | ||
Zuletzt prüfen wir noch die Randpunkte. | Zuletzt prüfen wir noch die Randpunkte. | ||
<math>A(0)=0</math> und <math>A(3)=7,5</math>. | <math>A(0)=0</math> und <math>A(3)=7{,}5</math>. | ||
Damit liegt der globale Hochpunkt an der Stelle <math>x=3</math>. | Damit liegt der globale Hochpunkt an der Stelle <math>x=3</math>. | ||
Der Flächeninhalt ist also am größten, wenn der zweite Eckpunkt des achsenparallelen Rechteckes an die Stelle <math>x=3</math> gelegt wird. Der Flächeninhalt beträgt dann <math>7,5cm^2</math> | Der Flächeninhalt ist also am größten, wenn der zweite Eckpunkt des achsenparallelen Rechteckes an die Stelle <math>x=3</math> gelegt wird. Der Flächeninhalt beträgt dann <math>7{,}5cm^2</math> | ||
|2=Lösung |3=Lösung verbergen }} | |2=Lösung |3=Lösung verbergen }} | ||
Version vom 19. Mai 2020, 13:19 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Optimierungsproblemen
Gegeben ist die Länge der Laufbahn um den Sportplatz herum, also der Umfang des Sportplatzes. Maximiert werden soll die Größe des Fussballfeldes, also der rechteckige Flächeninhalt innerhalb des Sportplatzes.
Die Formel zum Flächeninhalt ist . Über die Größen selbst weißt du ebenfalls etwas durch den Umfang: . Stelle die Formel für den Umfang nun nach um und erhalte:
Setze nun deine Formel für in den Flächeninhalt ein. So erhälst du die folgende Zielfunktion:
Für diese Funktion kann nur zwischen und liegen, also
Nun musst du den optimalen Wert berechnen. Gesucht ist hier das Maximum. Bilde dazu die Ableitungen:
Mit der notwendigen Bedingung erhälst du dann . Mit der hinreichenden Bedingung folgt , somit erfüllt alle Bedingungen.
Berechne nun und den Flächeninhalt:
- und
a) Der Flächeninhalt des Fussballfeldes wird für eine Breite von und eine Höhe von maximal.
b) Der Flächeninhalt wird auf maximiert.
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen