Herta-Lebenstein-Realschule/Lineare Funktionen im Aktiv-Urlaub/2.3 Wertetabelle und Funktionsgleichung: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 181: Zeile 181:
<br>
<br>
===Aufstellen der Funktionsgleichung durch zwei Punkte (Zwei-Punkte-Form)===
===Aufstellen der Funktionsgleichung durch zwei Punkte (Zwei-Punkte-Form)===
{{Box|1=Aufstellen der Funktionsgleichung, wenn zwei Punkte gegeben sind|2=Um eine Gerade zu zeichnen, genügen zwei Punkte A und B. Du kannst damit auch die Funktionsgleichung der linearen Funktion f(x) = mx + b aufstellen:<br>
{{Box|1=Aufstellen der Funktionsgleichung, wenn zwei Punkte gegeben sind|2=Um eine Gerade zu zeichnen, genügen zwei Punkte A und B. Du kannst damit auch die Funktionsgleichung der linearen Funktion f(x) = mx + b aufstellen:<br>
1. Bestimme die Steigung m mit m = <math>\tfrac{y_2-y_1}{x_2-x_1}</math><br>
1. Bestimme die Steigung m mit m = <math>\tfrac{y_2-y_1}{x_2-x_1}</math><br>
Zeile 191: Zeile 192:
Begründung: Zeichne ein Steigungsdreieck mithilfe der Punkte A und B:<br>
Begründung: Zeichne ein Steigungsdreieck mithilfe der Punkte A und B:<br>
[[Datei:Zwei-Punkte-Form Geradengleichung Bild 3.png|rahmenlos|400x400px]]<br>
[[Datei:Zwei-Punkte-Form Geradengleichung Bild 3.png|rahmenlos|400x400px]]<br>
m =<math>\tfrac{y_2-y_1}{x_2-x_1}</math> = <math>\tfrac{7-3}{4-2}</math> <math>\tfrac{4}{2}</math> = 2<br>
m =<math>\tfrac{y_2-y_1}{x_2-x_1}</math> = <math>\tfrac{7-3}{4-2}</math> = <math>\tfrac{4}{2}</math> = 2<br>
also ist f(x) = 2x + b<br>
also ist f(x) = 2x + b<br>
2. Bestimme den y-Achsenabschnitt b (rechnerisch)<br>
2. Bestimme den y-Achsenabschnitt b (rechnerisch)<br>
Zeile 201: Zeile 202:


{{Box|Zwei-Punkte-Form - Übung|Löse die Aufgaben aus dem Buch. Nutze GeoGebra als Hilfe.
{{Box|Zwei-Punkte-Form - Übung|Löse die Aufgaben aus dem Buch. Nutze GeoGebra als Hilfe.
* S. 131, Nr. 14
* S. 131, Nr. 14 a
* S. 131, Nr. 15|Üben}}
* S. 131, Nr. 15|Üben}}
{{Lösung versteckt|1=Lösung zu Nr. 14<br>
a) A(3&#124;5); B(-1&#124;2)<br>
Bestimme m: m =<math>\tfrac{y_2-y_1}{x_2-x_1}</math> = <math>\tfrac{2-5}{-1-3}</math> = <math>\tfrac{-3}{-4}</math> = <math>\tfrac{3}{4}</math><br>
oder:<br>
m =<math>\tfrac{y_2-y_1}{x_2-x_1}</math> = <math>\tfrac{5-2}{3-(-1)}</math> = <math>\tfrac{3}{4}</math><br>|2= Vergleiche deine Lösung zu Nr. 14a|3=Verbergen}}
{{Lösung versteckt|1=A(3&#124;3); B(-1&#124;-5)<br>
Bestimme m: m =<math>\tfrac{y_2-y_1}{x_2-x_1}</math> = <math>\tfrac{-5-3}{-1-3}</math> = <math>\tfrac{-8}{-4}</math> = 2<br>
[[Datei:SP 8 S.131 Nr.15a.png|rahmenlos]]<br>
Also ist f(x) = 2x + b<br>
Bestimme b: B(-1&#124;-5) einsetzen:<br>
-5 = 2·(-1) + b<br>
-5 = -2 + b&nbsp;&nbsp;&#124;+2<br>
-3 = b<br>
Also ist f(x) = 2x - 3 (Passt zur Zeichnung.)|2=Vergleiche deine Lösungen zu Nr. 15a|3=Verbergen}}
{{Lösung versteckt|1=Hilfe zur Berechnung von m:<br>
Ziehe im GeoGebra-Applet die Punkte A und B passend zur Aufgabe. Die Berechnung der Steigung m wird dir dann angezeigt.<br>
Originallink https://www.geogebra.org/m/bds3xux7<br>
<ggb_applet id="bds3xux7" width="887" height="748" border="888888" />|2=Hilfe: GeoGebra-Applet zur Bestimmung von m|3=Verbergen}}





Aktuelle Version vom 27. Oktober 2024, 13:50 Uhr

Schullogo HLR.jpg



2.3) Zusammenhang zwischen Wertetabelle und Funktionsgleichung

Wiederholung: Erstellen einer Wertetabelle mithilfe der Funktionsgleichung

Du hast in den Einführungsbeispielen schon Wertetabellen erstellt. Schauen wir uns das Beispiel zum Bootsverleih noch einmal an. Die Funktionsgleichung lautet f(x) = 2x + 5

Um nun eine Wertetabelle zu erstellen, setze für x verschiedene Werte ein und berechne den zugehörigen y-Wert, den Funktionswert.  Erinnerung: Werte von Termen berechnen (7. Klasse) Wertetabelle erstellen Beispiel 2x+5 berichtigt.png

Das Video fasst das Vorgehen noch einmal zusammen:

Übung 1: Wertetabelle erstellen
Bearbeite im Buch S. 141 Nr. 2 links und rechts.
Setze für x schrittweise die Zahlen -3; -2; ...; 2; 3 ein und berechne den zugehörigen y-Wert

Gib die Funktionsgleichungen bei GeoGebra ein und prüfe, ob die von dir errechneten Punkte auf dem Graphen der Funktion liegen.

https://www.geogebra.org/graphing

Gib im GeoGebra-Applet die Werte für die Steigung m und den y-Achsenabschnitt b ein. Die Gerade und die Wertetabelle wird dann automatisch erzeugt. Vergleiche damit deine Lösungen.
Originallink: https://www.geogebra.org/m/jh9gfeky

GeoGebra


Punktprobe: Liegt der Punkt auf der Geraden?

Lineare Funktionen Punktprobe - Bootsverleih
Boat-307125 1280.png
Aufgabe 1: Tom und Lisa möchten im Urlaub ein Tretboot ausleihen. Die Grundgebühr beträgt 5€, pro Stunde zahlen sie 2€ Miete.

a) Sie leihen für 3 Stunden ein Tretboot. Der Bootsverleiher rechnet den Preis 10€ aus. Kann das sein?
b) Tom und Lisa leihen ein Tretboot für 1,5 Stunden. Wie viel müssen sie bezahlen?
c) Sie bezahlen 10 €. Wie lange haben sie das Tretboot ausgeliehen?

Bei der Punktprobe entscheidest du rechnerisch, ob ein Punkt auf dem Funktionsgraphen liegt.

geg: Punkt A(3|10); Funktion f(x) = 2x + 5

ges: Liegt der Punkt A auf dem Graphen der Funktion?

In der Zeichnung erkennen wir sofort, dass dies nicht der Fall ist. F(x) = 2x + 5 Punkt A liegt nicht auf dem Graphen.png


Punktprobe

Wie können wir rechnerisch prüfen, ob ein Punkt auf dem Graphen der Funktion liegt?

Schreibe die nachfolgende Rechnung in dein Heft.

Gegeben ist die Funktionsgleichung  y = 2x + 5. Liegt der Punkt A(3|10) auf dem Graphen der Funktion?

(Hier ist es leichter y statt f(x) zu schreiben, der Zusammenhang zu den Koordinaten des Punktes sind dann leichter zu erkennen.)

Idee: Setze die Koordinaten des Punktes in die Funktionsgleichung ein und prüfe, ob die Gleichung erfüllt wird.

   y=  2x + 5       A(3|10)

10 = 2·3 + 5

  10 = 6 + 5

  10 = 11 (f)

Es ergibt sich eine falsche Aussage, die Gleichung ist nicht erfüllt, also liegt der Punkt nicht auf dem Graphen. Wir prüfen ebenso, ob der Punkt B(4|13) auf der Geraden liegt:

Punktprobe:

  y  =  2x + 5       B(4|13)

13 = 2·4 + 5

13 = 8 + 5

13 = 13 (w)

Es ergibt sich eine wahre Aussage, die Gleichung ist erfüllt, also liegt der Punkt auf dem Graphen.

Das folgende Video fasst noch einmal zusammen:

Zusammenfassung:
noch mehr Beispiele:


Punktprobe
Wir können rechnerisch prüfen, ob ein Punkt auf dem Graphen der Funktion liegt. Dazu setzen wir die Koordinaten des Punktes P(xIy) in die Funktionsgleichung f(x) = mx + b ein. Der Punkt liegt auf dem Graphen, wenn sich eine wahre Aussage ergibt, die Gleichung also erfüllt ist.


Übung 2: Punktprobe
Prüfe in der folgenden App rechnerisch, ob der Punkt auf dem Graphen der Funktion liegt.




Fehlende Koordinate eines Punktes der Funktion berechnen

Fehlende Koordinaten berechnen - Bootsverleih
Boat-307125 1280.png
Aufgabe 1: Tom und Lisa möchten im Urlaub ein Tretboot ausleihen. Die Grundgebühr beträgt 5€, pro Stunde zahlen sie 2€ Miete.

b) Tom und Lisa leihen ein Tretboot für 1,5 Stunden. Wie viel müssen sie bezahlen?
c) Sie bezahlen 10 €. Wie lange haben sie das Tretboot ausgeliehen?

Du kannst mithilfe der Funktionsgleichung fehlende Koordinaten berechnen.

1. Möglichkeit: x-Koordinate ist gegeben
Tom und Lisa leihen ein Tretboot für 1,5 Stunden. Wie viel müssen sie bezahlen?

geg: x = 1,5 und f(x) = 2x+5

ges: zugehöriger y-Wert

Setze die x-Koordinate in die Funktionsgleichung ein und berechne:   f(x) = 2x + 5

   y = 2·1,5 + 5

          = 3 + 5

         = 8                            P(1,5|8)

Sie müssen 8€ bezahlen.


2. Möglichkeit: y-Koordinate ist gegeben:

Tom und Lisa bezahlen 10 €. Wie lange haben sie das Tretboot ausgeliehen?
geg: y = 10 und f(x) = 2x+5
ges: zugehörige x-Koordinate
Setze die y-Koordinate in die Funktionsgleichung ein und löse nach x auf:

  f(x) = 2x + 5

  10  = 2x + 5      |-5

    5  = 2x             |:2

   2,5 = x           P(2,5|10)

Sie haben das Boot für 2,5 Stunden geliehen.

Zusammenfassung:
noch mehr Beispiele:
Übung 3: Fehlende Koordinate bestimmen
Bestimme in der folgenden App jeweils die fehlende Koordinate.



Übung 4: Fehlende Koordinaten bestimmen und Punktprobe
Löse nun S. 137 Nr. 8 und 9.
Denke daran: P(x/y) Der erste Wert gibt immer die x- und der zweite Wert die y-Koordinate an. Setze nun entweder x oder y in die Gleichung ein und berechne den fehlenden Wert.

Hier findest du die Lösungen bunt gemischt:

  • fehlende x-Koordinate: 1; 5,5; 8
  • fehlende y-Koordinate: -2; 7; 3


Denke daran: P(x/y) Der erste Wert gibt immer die x- und der zweite Wert die y-Koordinate an. Setze nun die entsprechenden Werte für x und y in die Gleichung ein.

  • Erhältst du eine wahre Aussage, z.B. 5 = 5, so liegt der Punkt auf dem Funktionsgraphen.
  • Erhältst du eine falsche Aussage, z.B. 5 = 8, so liegt der Punkt nicht auf dem Funktionsgraphen.

Hier findest du die Lösungen: (nicht in der richtigen Reihenfolge)

  • Punkt A liegt einmal auf dem Graphen, zweimal nicht.
  • Punkt B liegt einmal auf dem Graphen, zweimal nicht.
  • Punkt C liegt zweimal auf dem Graphen, einmal nicht.


Übung 5: Fehlende Koordinaten bestimmen und Punktprobe





Aufstellen der Funktionsgleichung durch den Punkt P mit m oder b gegeben


Übung 6: Aufstellen der Funktionsgleichung
Löse S. 130 Nr. 9 (zeichnerisch UND rechnerisch) und S. 131 Nr. 13. Gegeben ist ein Punkt und die Steigung bzw. der y-Achsenabschnitt b. Wie kannst du vorgehen?

Die vorangegangenen Übungen zur "Punktprobe" können dir helfen:

Sezte in die allgemeine Funktionsgleichung f(x) = mx + b die gegebenen Größen ein und löse nach der gesuchten Größe auf.

Zu Nr. 9: Wenn die Gerade parallel zur Geraden von f(x)= 1,5x + 1 verläuft, haben die Geraden dieselbe Steigung! Also ist m = 1,5 gegeben. Außerdem hast du den Punkt P(2I6) gegeben. Gesucht ist b.

Setze die gegebenen Größen ein und löse nach b auf.
Hilfen bietet das nachfolgende Video:



Aufstellen der Funktionsgleichung durch zwei Punkte (Zwei-Punkte-Form)

Aufstellen der Funktionsgleichung, wenn zwei Punkte gegeben sind

Um eine Gerade zu zeichnen, genügen zwei Punkte A und B. Du kannst damit auch die Funktionsgleichung der linearen Funktion f(x) = mx + b aufstellen:
1. Bestimme die Steigung m mit m =
2. Bestimme den y-Achsenabschnitt b mithilfe der Punktprobe (A oder B einsetzen und die Gleichung nach b auflösen).

Diese Vorgehen wird im Beispiel unten gezeigt.

Beispiel:
gegeben: A(2|3); B(4|7)
gesucht: Funktionsgleichung f(x) = mx + b
1. Bestimme die Steigung m: m =
Begründung: Zeichne ein Steigungsdreieck mithilfe der Punkte A und B:
Zwei-Punkte-Form Geradengleichung Bild 3.png
m = = = = 2
also ist f(x) = 2x + b
2. Bestimme den y-Achsenabschnitt b (rechnerisch)
Punktprobe: Setze A(2|3) in die Funktionsgleichung f(x) = 2x + b ein:
3 = 2·2 + b   |zusammenfassen
3 = 4 + b    |-4 -1 = b
Also lautet die Funktionsgleichung f(x) = 2x - 1


Zwei-Punkte-Form - Übung

Löse die Aufgaben aus dem Buch. Nutze GeoGebra als Hilfe.

  • S. 131, Nr. 14 a
  • S. 131, Nr. 15

Lösung zu Nr. 14
a) A(3|5); B(-1|2)
Bestimme m: m = = = =
oder:

m = = =

A(3|3); B(-1|-5)
Bestimme m: m = = = = 2
SP 8 S.131 Nr.15a.png
Also ist f(x) = 2x + b
Bestimme b: B(-1|-5) einsetzen:
-5 = 2·(-1) + b
-5 = -2 + b  |+2
-3 = b

Also ist f(x) = 2x - 3 (Passt zur Zeichnung.)

Hilfe zur Berechnung von m:
Ziehe im GeoGebra-Applet die Punkte A und B passend zur Aufgabe. Die Berechnung der Steigung m wird dir dann angezeigt.
Originallink https://www.geogebra.org/m/bds3xux7

GeoGebra


Schnittpunkte mit den Koordinatenachsen bestimmen

Lineare Funktionen erkennen - Pool
Smartphone-2953932 1280.png
Aufgabe 3: Der Pool des Hotels muss geleert werden. Zu Beginn steht das Wasser 2 m hoch. Der Wasserstand sinkt stündlich um 10 cm. Nach welcher Zeit ist der Pool leer?


Schnittpunkte mit den Koordinatenachsen

Für den Schnittpunkt Py mit der y-Achse (y-Achsenabschnitt) setzen wir x = 0 in die Funktionsgleichung ein berechnen b.

Py (0|b)

Für den Schnittpunkt N mit der x-Achse (Nullstelle) setzen wir f(x) = 0 (oder y = 0) in die Funktionsgleichung ein und lösen die Gleichung nach x auf.

N (xNI0)

Übersicht Schnittpunkte mit den Koordinatenachsen



Übung 7: Schnittpunkte mit den Koordinatenachsen
Löse S. 137 Nr. 7

Nullstelle (Schnittpunkt mit der x-Achse): f(x) = 0, also -x+4 = 0

y-Achsenabschnitt (Schnittpunkt mit der y-Achse): x = 0, also f(0) = -0+4

Prüfe dein Ergebnis mithilfe von GeoGebra https://www.geogebra.org/graphing . Gib dort die Funktionsgleichung ein und vergleiche deine rechnerischen Lösungen mit dem Graphen. Wo schneidet der Graph die Koordinatenachsen?
F(x) = -x+4 Schnittpunkte mit den Koordinatenachsen.png
F(x) = -0.5x+5.png
Lösung S. 137 Nr. 7b.png
F(x) = 1.5x+3.png
F(x) = 0.25x-2.png