Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Lineare Funktionen: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
K (Korrektur bei Aufgabe 3b) Markierung: 2017-Quelltext-Bearbeitung |
||
(11 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt) | |||
Zeile 33: | Zeile 33: | ||
{{Box| Das solltest du verinnerlichen!| | {{Box| Das solltest du verinnerlichen!| | ||
# Der Graph einer linearen Funktion ist '''immer eine Gerade'''! Der Graph kann daher''' keine '''Kurven haben. | # Der Graph einer linearen Funktion ist '''immer eine Gerade'''! Der Graph kann daher''' keine '''Kurven haben. | ||
# Auch eine Funktion, deren Funktionsterm nur aus einer Konstante besteht, hat als Funktionsgraphen eine Gerade. Diese ist parallel zur <math> x </math>-Achse, da sie jedem <math>x</math>-Wert den gleichen <math>y</math>-Wert zuordnet. (Schiebe <math>m</math> in der unteren Abbildung auf <math>0</math> und schaue dir den entstandenen Graphen an.) | |||
# Auch eine Funktion, deren Funktionsterm nur aus einer Konstante besteht, hat als Funktionsgraphen eine Gerade. Diese ist parallel zur <math> x </math>-Achse, da sie jedem <math>x</math>-Wert den gleichen <math>y</math>-Wert zuordnet. (Schiebe <math>m</math> in der unteren Abbildung auf <math>0</math> und schaue dir den entstandenen Graphen an.) | # Bei linearen Funktionen, aber auch bei den anderen Funktionstypen gilt: Einem <math>x</math>-Wert wird immer nur ein <math>y</math>-Wert zugeordnet. | ||
# Ist der Funktionsterm einer linearen Funktion eine Konstante, so wird dauerhaft nur ein <math>y</math>-Wert angenommen. | |||
# Bei linearen Funktionen, aber auch bei den anderen Funktionstypen gilt: Einem <math>x</math>-Wert wird immer nur ein <math>y</math>-Wert zugeordnet. | # Ist der Funktionsterm einer linearen Funktion '''keine '''Konstante, so kann jeder <math>y</math>-Wert nur '''einmal '''getroffen werden. | ||
# Die allgemeine Funktionsgleichung einer linearen Funktion ist von der Form <math> f(x) = mx + b </math>. Der Wert <math>b</math> gibt dabei immer den <math>y</math>-Achsenabschnitt an. (Verändere in der unteren Abbildung <math>b</math> und beobachte wie sich der Graph verändert.) | |||
# Ist der Funktionsterm einer linearen Funktion eine Konstante, so wird dauerhaft nur ein <math>y</math>-Wert angenommen. | # Den <math>x</math>-Achsenabschnitt, die sogenannte '''Nullstelle''', berechnest du indem du <math>f(x)</math> gleich <math>0</math> setzt. Denn an dem Punkt, wo der Graph die <math>x</math>-Achse schneidet, ist der <math>y</math>-Wert gleich <math>0</math>. | ||
# Die Steigung ist der Vorfaktor der Variabel. Wenn die Funktionsgleichung von der Form <math>f(x) = mx + b</math> ist, so ist die Steigung gleich dem Wert von <math>m</math>. Der Wert der Steigung gibt dabei die Höhe des Steigungsdreiecks an, wenn die Länge <math>1</math> beträgt. (Verändere in der unteren Abbildung <math>m</math> und betrachte das Steigungsdreieck.) | |||
# Ist der Funktionsterm einer linearen Funktion '''keine '''Konstante, so kann jeder <math>y</math>-Wert nur '''einmal '''getroffen werden. | # Das Vorzeichen der Steigung gibt an, ob die Gerade fällt (negatives Vorzeichen), oder steigt (positives Vorzeichen). (Beobachte wie sich der Graph verändert wenn du <math>m</math> auf einen positiven oder auf einen negativen Wert schiebst.) | ||
# Die allgemeine Funktionsgleichung einer linearen Funktion ist von der Form <math> f(x) = mx + b </math>. Der Wert <math>b</math> gibt dabei immer den <math>y</math>-Achsenabschnitt an. (Verändere in der unteren Abbildung <math>b</math> und beobachte wie sich der Graph verändert.) | |||
# Den <math>x</math>-Achsenabschnitt, die sogenannte '''Nullstelle''', berechnest du indem du <math>f(x)</math> gleich <math>0</math> setzt. Denn an dem Punkt, wo der Graph die <math>x</math>-Achse schneidet, ist der <math>y</math>-Wert gleich <math>0</math>. | |||
# Die Steigung ist der Vorfaktor der Variabel. Wenn die Funktionsgleichung von der Form <math>f(x) = mx + b</math> ist, so ist die Steigung gleich dem Wert von <math>m</math>. Der Wert der Steigung gibt dabei die Höhe des Steigungsdreiecks an, wenn die Länge <math>1</math> beträgt. (Verändere in der unteren Abbildung <math>m</math> und betrachte das Steigungsdreieck.) | |||
# Das Vorzeichen der Steigung gibt an, ob die Gerade fällt (negatives Vorzeichen), oder steigt (positives Vorzeichen). (Beobachte wie sich der Graph verändert wenn du <math>m</math> auf einen positiven oder auf einen negativen Wert schiebst.) | |||
# Den '''Schnittpunkt''' zweier Funktionen erhältst du durch '''Gleichsetzen der beiden Funktionsterme. | # Den '''Schnittpunkt''' zweier Funktionen erhältst du durch '''Gleichsetzen der beiden Funktionsterme. | ||
''' | ''' | ||
Zeile 62: | Zeile 53: | ||
{{Lösung versteckt|1=Überlege dir, welche geometrische Form der Graph von linearen Funktionen hat.|2=Tipp 1-Erkennen eines linearen Funktionsgraphen|3=Tipp 1-Erkennen eines linearen Funktionsgraphen}} | {{Lösung versteckt|1=Überlege dir, welche geometrische Form der Graph von linearen Funktionen hat.|2=Tipp 1-Erkennen eines linearen Funktionsgraphen|3=Tipp 1-Erkennen eines linearen Funktionsgraphen}} | ||
{{Lösung versteckt|1=Überlege dir, welchen maximalen Exponenten die Variable einer linearen Funktion hat.|2=Tipp 2-Erkennen einer linearen Funktionsgleichungen|3=Tipp 2-Erkennen einer linearen Funktionsgleichungen}} | {{Lösung versteckt|1=Überlege dir, welchen maximalen Exponenten die Variable einer linearen Funktion hat.|2=Tipp 2-Erkennen einer linearen Funktionsgleichungen|3=Tipp 2-Erkennen einer linearen Funktionsgleichungen}} | ||
{{Lösung versteckt|1=Überlege dir, ob ein <math>x</math>-Wert von einer Funktion mehrmals angenommen werden darf.|2=Tipp 3-Ist es eine Funktion oder nicht|3=Tipp 3-Ist es eine Funktion oder nicht?}} | {{Lösung versteckt|1=Überlege dir, ob ein <math>x</math>-Wert von einer Funktion mehrmals angenommen werden darf.|2=Tipp 3-Ist es eine Funktion oder nicht?|3=Tipp 3-Ist es eine Funktion oder nicht?}} | ||
{{Lösung versteckt|1=Keine Funktion: Der Kreis und die zur <math>y</math>-Achse parallelen Gerade sind keine Funktionen. Bei diesen Vorschriften werden <math>x</math>-Werte mehrmals getroffen, was bei Funktionen nicht sein darf.|2 = Lösung - Keine Funktionen|3= Lösung - Keine Funktionen}} | {{Lösung versteckt|1=Keine Funktion: Der Kreis und die zur <math>y</math>-Achse parallelen Gerade sind keine Funktionen. Bei diesen Vorschriften werden <math>x</math>-Werte mehrmals getroffen, was bei Funktionen nicht sein darf.|2 = Lösung - Keine Funktionen|3= Lösung - Keine Funktionen}} | ||
{{Lösung versteckt|1=Lineare Funktion: Alle Geraden, die nicht parallel zur <math>y</math>-Achse verlaufen (also nicht senkrecht sind) und alle Funktionen, bei denen die Variabel maximal den Exponent <math>1</math> hat, sind lineare Funktionen.|2= Lösung - Lineare Funktionen|3= Lösung - Lineare Funktionen}} | {{Lösung versteckt|1=Lineare Funktion: Alle Geraden, die nicht parallel zur <math>y</math>-Achse verlaufen (also nicht senkrecht sind) und alle Funktionen, bei denen die Variabel maximal den Exponent <math>1</math> hat, sind lineare Funktionen.|2= Lösung - Lineare Funktionen|3= Lösung - Lineare Funktionen}} | ||
Zeile 82: | Zeile 73: | ||
{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + b</math> ein.|2=Tipp|3=Tipp}} | {{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + b</math> ein.|2=Tipp|3=Tipp}} | ||
{{Lösung versteckt|1 = Setze zunächst für die Steigung <math>m = -4</math>, sodass dein erstes Gerüst <math>f(x) = -4x + b</math> entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes <math>P(-7/-1)</math>, sodass du mit <math>x = -7</math> und <math>f(x) = -1</math> die Gleichung <math>-1 = -4\cdot(-7) + b</math> erhältst. Bestimme nun mit Auflösung nach <math>b</math> den Wert <math>b = | {{Lösung versteckt|1 = Setze zunächst für die Steigung <math>m = -4</math>, sodass dein erstes Gerüst <math>f(x) = -4x + b</math> entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes <math>P(-7/-1)</math>, sodass du mit <math>x = -7</math> und <math>f(x) = -1</math> die Gleichung <math>-1 = -4\cdot(-7) + b</math> erhältst. Bestimme nun mit Auflösung nach <math>b</math> den Wert <math>b = -29</math>, sodass sich schließlich die Geradengleichung <math>f(x) = -4x - 29</math> ergibt.|2 = Lösung|3 = Lösung}} | ||
'''c)''' Gegeben sei die Steigung <math>m = \frac{5}{8}</math> und der Punkt <math>P(-\frac{2}{7}/\frac{3}{4})</math>. | '''c)''' Gegeben sei die Steigung <math>m = \frac{5}{8}</math> und der Punkt <math>P(-\frac{2}{7}/\frac{3}{4})</math>. | ||
Zeile 151: | Zeile 142: | ||
'''a)''' Stelle für beide Behälter jeweils eine Funktionsvorschrift auf, mit der du zu jeder Zeit die Wassermenge berechnen kannst, die sich noch im Behälter befindet. Zeichne für beide Funktionen den Funktionsgraphen in dein Heft. | '''a)''' Stelle für beide Behälter jeweils eine Funktionsvorschrift auf, mit der du zu jeder Zeit die Wassermenge berechnen kannst, die sich noch im Behälter befindet. Zeichne für beide Funktionen den Funktionsgraphen in dein Heft. (Hierbei sollte sowohl der <math>x</math>-Achsenabschnitt, sowie auch der <math>y</math>-Achsenabschnitt eingezeichnet sein. Wähle daher eine geeignete Skalierung.) | ||
Zeile 159: | Zeile 150: | ||
{{Lösung versteckt|1 = Die Punkte für den Behälter A sind <math> (0|500)</math> und <math>(15|0)</math>. Die Punkte für den Behälter B sind <math> (0|300)</math> und <math>(20|0)</math>. Setze für jeden Behälter die jeweiligen beiden Punkte in die allgemeine Form der linearen Funktion ein. |2=Tipp 2|3=Tipp 2}} | {{Lösung versteckt|1 = Die Punkte für den Behälter A sind <math> (0|500)</math> und <math>(15|0)</math>. Die Punkte für den Behälter B sind <math> (0|300)</math> und <math>(20|0)</math>. Setze für jeden Behälter die jeweiligen beiden Punkte in die allgemeine Form der linearen Funktion ein. |2=Tipp 2|3=Tipp 2}} | ||
{{Lösung versteckt|1= Da die Variable <math>x</math> die Stunden angibt, werden auch beim Zeichnen die Stunden auf der <math>x</math>-Achse eingetragen. Dementsprechend wird auf der <math>y</math>-Achse die Wasserhöhe im Behälter in Millilitern eingetragen. Da du auf der <math>x</math>-Achse bis <math> x=20 </math> gehen musst, könntest du hier eine Skalierung wählen bei der du <math> 1 cm </math> für zwei Stunden wählst. Auf der <math>y</math>-Achse musst du bis <math>y=500</math> gehen. Hier könntest du <math> 1 cm </math> für <math> 50 ml </math> wählen. Natürlich sind auch andere Skalierungen möglich, du solltest dir nur überlegen, dass das Koordinatensystem nicht zu groß wird.|2= Tipp fürs Zeichnen |3= Tipp fürs Zeichnen}} | |||
{{Lösung versteckt|1= | |||
{{Lösung versteckt|1 = '''Behälter A: ''' | {{Lösung versteckt|1 = '''Behälter A: ''' | ||
Wir haben die Punkte <math> (0|500)</math> und <math>(15|0)</math> und die allgemeine Funktionsgleichung <math> f(x) = m | Wir haben die Punkte <math> (0|500)</math> und <math>(15|0)</math> und die allgemeine Funktionsgleichung <math> f(x) = m\cdot x+b</math>. In diese setzten wir die beiden Punkte jeweils ein: | ||
'''<math> (0|500)</math>:''' <math> f(0) = m | '''<math> (0|500)</math>:''' <math> f(0) = m\cdot 0+b = 500</math>, wodurch <math>b=500</math> folgt. | ||
'''<math>(15|0)</math>:''' <math>f(15) = m | '''<math>(15|0)</math>:''' <math>f(15) = m\cdot 15+b=0</math>. Da wir schon wissen, dass <math>b=500</math> ist, folgt hieraus, dass <math>m=-\frac{100}{3}</math> ist. | ||
Setzt man nun <math>m</math> und <math>b</math> in die Funktionsgleichung ein, erhalten wir <math> f(x) = -\frac{100}{3} | Setzt man nun <math>m</math> und <math>b</math> in die Funktionsgleichung ein, erhalten wir <math> f(x) = -\frac{100}{3} \cdot x + 500</math>|2=Lösung für Behälter A|3=Lösung für Behälter A}} | ||
{{Lösung versteckt|1 = '''Behälter B: ''' | {{Lösung versteckt|1 = '''Behälter B: ''' | ||
Wir haben die Punkte <math> (0|300)</math> und <math>(20|0)</math> und die allgemeine Funktionsgleichung <math> g(x) = n | Wir haben die Punkte <math> (0|300)</math> und <math>(20|0)</math> und die allgemeine Funktionsgleichung <math> g(x) = n\cdot x+a</math>. In diese setzten wir die beiden Punkte jeweils ein: | ||
'''<math> (0|300)</math>: ''' <math> g(0) = n | '''<math> (0|300)</math>: ''' <math> g(0) = n\cdot 0+a = 300</math>, wodurch <math>a=300</math> folgt. | ||
'''<math>(20|0)</math>:''' <math>g(20) = n | '''<math>(20|0)</math>:''' <math>g(20) = n\cdot 20+a=0</math>. Da wir schon wissen, dass <math>a=300</math> ist, folgt hieraus, dass <math>n=-15</math> ist. | ||
Setzt man nun <math>n</math> und <math>a</math> in die Funktionsgleichung ein, erhalten wir <math> g(x) = -15 | Setzt man nun <math>n</math> und <math>a</math> in die Funktionsgleichung ein, erhalten wir <math> g(x) = -15 \cdot x + 300</math>|2=Lösung für Behälter B|3=Lösung für Behälter B}} | ||
{{Lösung versteckt|1 = | {{Lösung versteckt|1 =<ggb_applet id="y7ewcapm" width="700" height="500" border="888888" />|2= Lösung für die Funktionsgraphen|3=Lösung für die Funktionsgraphen}} |2= Lösung anzeigen |3= Lösungen verstecken}} | ||
'''b)''' In Kittys Napf passen 150ml Wasser. Läuft der Napf nach 5 Stunden bei einem der beiden Behälter über, wenn dieser vorher leer war und Kitty in den 5 Stunden nichts trinkt? | '''b)''' In Kittys Napf passen 150ml Wasser. Läuft der Napf nach 5 Stunden bei einem der beiden Behälter über, wenn dieser vorher leer war und Kitty in den 5 Stunden nichts trinkt? | ||
Zeile 191: | Zeile 185: | ||
{{Lösung versteckt|1 = Die Variable <math>x</math> steht für unsere Stundenzahl, also setzten wir für <math>x</math> <math> 5</math> ein. | {{Lösung versteckt|1 = Die Variable <math>x</math> steht für unsere Stundenzahl, also setzten wir für <math>x</math> <math> 5</math> ein. | ||
'''Behälter A: ''' Wir berechnen also <math>f(5)=-\frac{100}{3} | '''Behälter A: ''' Wir berechnen also <math>f(5)=-\frac{100}{3} \cdot 5 + 500 =\frac{1000}{3}</math>. Dieser Wert gibt an, wie viel Wasser nach den fünf Stunden noch im Behälter A ist. Um zu berechnen, welche Menge im Napf ist, müssen wir von der Anfangsmenge <math> 500ml </math> die <math> \frac{1000}{3} ml</math> abziehen und erhalten somit, dass ca. <math>167ml</math> in dem Napf sind. Dieser läuft also über. | ||
'''Behälter B: ''' Wir berechnen also <math>g(5)=-15 | '''Behälter B: ''' Wir berechnen also <math>g(5)=-15 \cdot 5 + 300 =225</math>. Dieser Wert gibt an, wie viel Wasser nach den fünf Stunden noch im Behälter B ist. Um zu berechnen, welche Menge im Napf ist, müssen wir von der Anfangsmenge <math> 300ml </math> die <math> 225ml</math> abziehen und erhalten somit, dass ca. <math>75ml</math> in dem Napf sind. Dieser läuft also '''nicht ''' über.|2=Lösung|3=Lösung}} | ||
|Arbeitsmethode}} | |Arbeitsmethode}} |
Aktuelle Version vom 4. Oktober 2019, 07:20 Uhr
Lineare Funktionen - ein Überblick
Lineare Funktionen erkennen
Lineare Funktionen - Bestimmung von Geradengleichungen
Prüfen, ob Punkte auf einer Geraden liegen
Eine lineare Gleichung einer Geraden zuordnen
Den Schnittpunkt zweier Geraden bestimmen
Lineare Funktionen im Anwendungskontext