Digitale Werkzeuge in der Schule/Kleine Lernstandserhebung zur Doppeljahrgangsstufe 5/6/Natürliche Zahlen/Natürliche Zahlen schriftlich addieren und subtrahieren: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(13 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
==Info==
== Schriftliches Addieren und Subtrahieren von natürlichen Zahlen ==
In diesem Lernpfadunterkapitel wiederholst du...
*natürliche Zahlen schriftlich zu addieren und subtrahieren
*Fachbegriffe, Rechengesetze sowie Rechenvorteile zur Addition und Subtraktion


==Addition von natürlichen Zahlen==
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 1: Zahlenmauer|<ggb_applet id="v5t8qkpv" width="1000" height="800"/>|Arbeitsmethode | Farbe={{Farbe|orange}}
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (*) Aufgabe 1: Zahlenmauer|<ggb_applet id="v5t8qkpv" width="1000" height="500"/>|Üben
}}
}}


{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (*) Aufgabe 2: Schriftliches Addieren bis 1000|Löse die Aufgaben schriftlich mit Stift und Papier. Verbinde danach die Rechnungen mit den passenden Ergebnissen. Falls du etwas falsch verbindest kannst du auf den Tesa-Streifen, der die zwei Kärtchen zusammen hält klicken und die 2 Karten lösen sich.
=== Fachbegriffe und Rechengesetze ===
{{LearningApp|width=100%|height=500px|app=7227712}}|Üben
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 2: Fachbegriffe zur Addition und Subtraktion|{{LearningApp|width=100%|height=500px|app=14302180}}|Arbeitsmethode | Farbe=#CD2990
}}
}}


{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (**) Aufgabe 3: Schriftliches Addieren mit großen Zahlen|{{LearningApp|width=100%|height=500px|app=299957}}|Üben
{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz zu Fachbegriffen|'''Addition'''                                             
}}


[[Datei:Grundbegriffe der Addition.png|links|1800px|mini]]


{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz zur schriftlichen Addition|Die '''schriftliche Addition''' hilft dir, größere und mehrere Zahlen zu addieren.


Schreibe die Zahlen immer '''stellengerecht '''untereinander:


Einer unter Einer, Zehner unter Zehner, ... [[Datei:Stellenwerttafel Addition.png|mini|187x187px]]


Es gibt zwei verschiedene Arten der schriftlichen Addition:


* Die Addition '''ohne '''Übertrag


* Die Addition '''mit '''Übertrag




'''Die Addition ''ohne'' Übertrag'''


Du beginnst mit der Addition '''rechts'''.


'''Beispiel''':


[[Datei:Addition ohne Übertrag.png|mini|links|250x250px]]






'''Subtraktion'''
[[Datei:Subtraktio.png|links|1800px|mini]]|Merksatz | Farbe={{Farbe|grün|dunkel}}
}}


{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 3: Die Rechengesetze|<ggb_applet id="nwufy9pt" width="1000" height="600"/>|Arbeitsmethode | Farbe=#CD2990
}}




{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz Vertauschungsgesetz (Kommutativgesetz)|Das '''Vertauschungsgesetz (Kommutativgesetz)''' besagt: Beim Addieren kannst du die Summanden vertauschen. Das Ergebnis bleibt gleich. '''Beispiel'''<nowiki>: 83 + 92 =92 + 83</nowiki>




'''''Vorsicht bei der Subtraktion'''''


Untersuche das Vertauschen bei der Subtraktion.


'''Beispiel''':


<nowiki>100 - 50 + 45 = 95 </nowiki>


<nowiki>100 - 45 + 50 = 105 </nowiki>


Also ist 100 - 50 + 45 '''nicht '''das gleiche wie 100 - 45 + 50.


Beim '''''Subtrahieren '''''kannst du '''Minuend''' und '''Subtrahend''' '''nicht''' vertauschen. Das Vertauschen von Subtrahend und Minuend führt nicht zum richtigen  Ergebniss.|Merksatz | Farbe={{Farbe|grün|dunkel}}
}}


'''Die Addition ''mit'' Übertrag'''
{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz Verbindungsgesetz (Assoziativgesetz)|Das '''Verbindungsgesetz (Assoziativgesetz)''' besagt: Beim Addieren kannst du beliebig Klammern setzen oder weglassen. Das Ergebnis bleibt gleich. (Hinweis: Du rechnest zuerst die Klammer wegen Klammer vor Punkt vor Strich aus).


Du beginnst wieder '''rechts''' mit der Addition.
'''Beispiel''':


'''Beispiel''':
<nowiki>26 + 73 + 37 = (26 + 73) + 37 </nowiki>


[[Datei:Addition mit Übertrag.png|mini|links|328x328px]]|Hervorhebung2
<nowiki>26 + 73 + 37 = 26 + (73 + 37)</nowiki>
}}
==Subtraktion von natürlichen Zahlen==
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (*) Aufgabe 4: Schriftliches Subtrahieren|{{LearningApp|width=100%|height=500px|app=25577109}}|Üben
}}


{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (**) Aufgabe 5: Schriftliches Subtrahieren mit großen Zahlen|{{LearningApp|width=100%|height=500px|app=299898}}|Üben
}}


'''''Vorsicht bei der Subtraktion'''''


{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz zur schriftlichen Subtraktion|Die '''schriftliche Subtraktion''' hilft dir, größere und mehrere Zahlen zu subtrahieren.  
Untersuche das Setzen von Klammern bei der Subtraktion.  


Schreibe die Zahlen immer '''stellengerecht '''untereinander:  
'''Beispiel''':  


Einer unter Einer, Zehner unter Zehner, ...
<nowiki>(123 - 73) - 27 = 50 - 27 = 23 </nowiki>


[[Datei:Stellenwerttafel Subtraktion.png|mini]]
<nowiki>123 - (73 - 27) = 123 - 46 = 77 </nowiki>


Es gibt zwei verschiedene Arten der schriftlichen Subtraktion:
Also ist (123 - 73) - 27 '''nicht '''das gleiche wie 123 - (73 - 27).


* Die Subtraktion '''ohne '''Übertrag
Beim '''''Subtrahieren '''''kannst du '''nicht '''beliebig Klammern setzen. Das Setzen von Klammern bei der Subtraktion führt zu unterschiedlichen Ergebnisse.|Merksatz | Farbe={{Farbe|grün|dunkel}}
}}


* Die Subtraktion '''mit '''Übertrag




'''Die Subtraktion ''ohne'' Übertrag'''


Du beginnst mit der Subtraktion '''rechts'''. Die untere Zahl wird dabei zur oberen Zahl ergänzt.
=== Addition von natürlichen Zahlen ===
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 4: Schriftliches Addieren bis 1000|Löse die Aufgaben schriftlich mit Stift und Papier. Verbinde danach die Rechnungen mit den passenden Ergebnissen. Falls du etwas falsch verbindest kannst du auf den Tesa-Streifen, der die zwei Kärtchen zusammen hält klicken und die 2 Karten lösen sich.
{{LearningApp|width=100%|height=500px|app=7227712}}|Arbeitsmethode | Farbe={{Farbe|orange}}
}}


'''Beispiel''':  
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 5: Schriftliches Addieren mit großen Zahlen|{{LearningApp|width=100%|height=500px|app=299957}}|Arbeitsmethode | Farbe=#CD2990
}}


[[Datei:Subtraktion ohne Übertrag.png|mini|links|250x250px]]


{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz zur schriftlichen Addition|Die '''schriftliche Addition''' hilft dir, größere und mehrere Zahlen zu addieren.


Schreibe die Zahlen immer '''stellengerecht '''untereinander:


Einer unter Einer, Zehner unter Zehner, ... [[Datei:Stellenwerttafel Addition.png|mini|187x187px]]


Es gibt zwei verschiedene Arten der schriftlichen Addition:


* Die Addition '''ohne '''Übertrag


* Die Addition '''mit '''Übertrag




'''Die Addition ''ohne'' Übertrag'''


Du beginnst mit der Addition '''rechts'''.


'''Beispiel''':


[[Datei:Addition ohne Übertrag.png|mini|links|250x250px]]




Zeile 107: Zeile 114:




'''Die Subtraktion ''mit'' Übertrag'''


Du beginnst wieder '''rechts''' mit der Subtraktion.


'''Beispiel''':


[[Datei:Subtraktion mit Übertrag.png|mini|links|328x328px]]|Hervorhebung2
}}




==Fachbegriffe und Rechengesetze==
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (**) Aufgabe 6: Fachbegriffe zur Addition und Subtraktion|{{LearningApp|width=100%|height=500px|app=14302180}}|Üben
}}


{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz zu Fachbegriffen|'''Addition'''                                             


[[Datei:Grundbegriffe der Addition.png|links|1800px|mini]]


'''Die Addition ''mit'' Übertrag'''


Du beginnst wieder '''rechts''' mit der Addition.


'''Beispiel''':


[[Datei:Addition mit Übertrag.png|mini|links|328x328px]]|Merksatz | Farbe={{Farbe|grün|dunkel}}
}}
=== Subtraktion von natürlichen Zahlen ===
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 6: Schriftliches Subtrahieren|{{LearningApp|width=100%|height=500px|app=25577109}}|Arbeitsmethode | Farbe={{Farbe|orange}}
}}


{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 7: Schriftliches Subtrahieren mit großen Zahlen|{{LearningApp|width=100%|height=500px|app=299898}}|Arbeitsmethode | Farbe=#CD2990
}}




{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz zur schriftlichen Subtraktion|Die '''schriftliche Subtraktion''' hilft dir, größere und mehrere Zahlen zu subtrahieren.


Schreibe die Zahlen immer '''stellengerecht '''untereinander:


Einer unter Einer, Zehner unter Zehner, ...


[[Datei:Stellenwerttafel Subtraktion.png|mini]]


Es gibt zwei verschiedene Arten der schriftlichen Subtraktion:


* Die Subtraktion '''ohne '''Übertrag


* Die Subtraktion '''mit '''Übertrag


'''Subtraktion'''
[[Datei:Subtraktio.png|links|1800px|mini]]|Hervorhebung2
}}


{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (**) Aufgabe 7: Die Rechengesetze|<ggb_applet id="nwufy9pt" width="1000" height="600"/>|Üben
'''Die Subtraktion ''ohne'' Übertrag'''
}}


Du beginnst mit der Subtraktion '''rechts'''. Die untere Zahl wird dabei zur oberen Zahl ergänzt.


'''Beispiel''':


[[Datei:Subtraktion ohne Übertrag.png|mini|links|250x250px]]


{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz Vertauschungsgesetz (Kommutativgesetz)|




{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz Vertauschungsgesetz (Kommutativgesetz)
| Das '''Vertauschungsgesetz (Kommutativgesetz)''' besagt: Beim Addieren kannst du die Summanden vertauschen. Das Ergebnis bleibt gleich.


'''Beispiel''': 83 + 92 = 92 + 83




'''''Vorsicht bei der Subtraktion'''''


Untersuche das Vertauschen bei der Subtraktion.


'''Beispiel''':


100 - 50 + 45 = 95


100 - 45 + 50 = 105


Also ist 100 - 50 + 45 '''nicht '''das gleiche wie 100 - 45 + 50.


Beim '''''Subtrahieren '''''kannst du '''Minuend''' und '''Subtrahend''' '''nicht''' vertauschen. Das Vertauschen ergibt unterschiedliche Ergebnisse.|Hervorhebung2
}}


{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz Verbindungsgesetz (Assoziativgesetz)
| Das '''Verbindungsgesetz (Assoziativgesetz)''' besagt: Beim Addieren kannst du beliebig Klammern setzen oder weglassen. Das Ergebnis bleibt gleich. (Hinweis: Du rechnest zuerst die Klammer wegen Klammer vor Punkt vor Strich aus).


'''Beispiel''':


26 + 73 + 37 = (26 + 73) + 37


26 + 73 + 37 = 26 + (73 + 37)




'''''Vorsicht bei der Subtraktion'''''
'''Die Subtraktion ''mit'' Übertrag'''


Untersuche das Setzen von Klammern bei der Subtraktion.
Du beginnst wieder '''rechts''' mit der Subtraktion.


'''Beispiel''':
'''Beispiel''':


(123 - 73) - 27 = 50 - 27 = 23
[[Datei:Subtraktion mit Übertrag.png|mini|links|328x328px]]|Merksatz | Farbe={{Farbe|grün|dunkel}}
}}
 
 
 


123 - (73 - 27) = 123 - 46 = 77


Also ist (123 - 73) - 27 '''nicht '''das gleiche wie 123 - (73 - 27).


Beim '''''Subtrahieren '''''kannst du '''nicht '''beliebig Klammern setzen. Das Setzen von Klammern führt zu unterschiedlichen Ergebnissen.|Hervorhebung2
=== Gemischte Aufgaben (Addition, Subtraktion, Fachbegriffe) ===
}}


<big>''' Hinweis: Verfahren bei Textaufgaben'''</big>


==Gemischte Aufgaben==
Suche bei Anwendungsaufgaben nach '''Signalwörtern'''. Übersetze den Text in eine Rechnung, rechne aus und schreibe einen Antwortsatz in dein Heft.


{{Box|[[Datei:Check-Logo.png|links|rahmenlos|30x30px]] Hinweis: Verfahren bei Textaufgaben|Suche bei Anwendungsaufgaben nach '''Signalwörtern'''. Übersetze den Text in eine Rechnung, rechne aus und schreibe einen Antwortsatz in dein Heft.|Unterrichtsidee
}}


{{Box|[[Datei:Check-Logo.png|links|rahmenlos|30x30px]] Tipp Signalwärter|{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
Diese Signalwörter sagen dir, dass du '''subtrahierst''':
Diese Signalwörter sagen dir, dass du '''subtrahierst''':
* vermindert
* vermindert
Zeile 219: Zeile 215:
* hinzufügen
* hinzufügen


|2=Signalwörter|3=Signalwörter verstecken}}|Unterrichtsidee
|2=Signalwörter|3=Signalwörter verstecken}}
}}
 
 


{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 8: Waffelverkauf|[[Datei:Waffelverkauf.png|mini]]Die 6b hat 120 € in der Klassenkasse. Mit einem Waffelverkauf hat die 6b 48 € verdient. Für ihr Sommerfest gibt die Klasse 80 € für Getränke und Essen aus. Wie viel Geld hat die 6b nach dem Sommerfest in der Klassenkasse?


{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (**) Waffelverkauf|[[Datei:Waffelverkauf.png|mini]]Die 6b hat 120 € in der Klassenkasse. Mit einem Waffelverkauf hat die 6b 48 € verdient. Für ihr Sommerfest gibt die Klasse 80 € für Getränke und Essen aus. Wie viel Geld hat die 6b nach dem Sommerfest in der Klassenkasse?|Üben
}}


{{Box|[[Datei:Check-Logo.png|links|rahmenlos|30x30px]] Lösung|{{Lösung versteckt|1=Rechnung: 120 + 48 - 80 = 168 - 80 = 88
{{Lösung versteckt|1=Rechnung: 120 + 48 - 80 = 168 - 80 = 88


Die 6b hat nach dem Sommerfest 88 € in der Klassenklasse.|2=Lösung|3=Lösung verstecken}}|Unterrichtsidee
Die 6b hat nach dem Sommerfest 88 € in der Klassenklasse.|2=Lösung|3=Lösung verstecken}}
|Arbeitsmethode | Farbe=#CD2990
}}
}}


Zeile 234: Zeile 231:




{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (**) Laufen|[[Datei:Laufen.png|mini]]
Aysen trainiert und läuft dreimal in der Woche. Am Montag läuft sie 2 km, am Mittwoch 3 km, aber am Freitag nur 800 m. Wie viel ist sie am Ende der Woche gelaufen?|Üben
}}


{{Box|[[Datei:Check-Logo.png|links|rahmenlos|30x30px]] Hinweis: Rechnen mit Einheiten & Lösung|{{Lösung versteckt|1= Wenn in einer Aufgabe Zahlen mit verschiedenen Einheiten vorkommen, wandelst du die Einheiten so um, dass du nur noch eine Einheit hast. Dann kannst du wie gewohnt rechnen.  
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 9: Laufen|[[Datei:Laufen.png|mini]]
Aysen trainiert und läuft dreimal in der Woche. Am Montag läuft sie 2 km, am Mittwoch 3 km, aber am Freitag nur 800 m. Wie viel ist sie am Ende der Woche gelaufen?
 
{{Lösung versteckt|1= Wenn in einer Aufgabe Zahlen mit verschiedenen Einheiten vorkommen, wandelst du die Einheiten so um, dass du nur noch eine Einheit hast. Dann kannst du wie gewohnt rechnen.  
|2=Hinweis|3=Hinweis verstecken}}
|2=Hinweis|3=Hinweis verstecken}}
{{Lösung versteckt|1=Rechnung:
{{Lösung versteckt|1=Rechnung:
Zeile 244: Zeile 241:
= 2000 m + 3000 m + 800 m
= 2000 m + 3000 m + 800 m
= 5800 m
= 5800 m
Aysen ist insgesamt 5800 m gelaufen.|2=Lösung|3=Lösung verstecken}}|Unterrichtsidee
Aysen ist insgesamt 5800 m gelaufen.|2=Lösung|3=Lösung verstecken}}
|Arbeitsmethode | Farbe=#CD2990
}}
}}




=== Bonusaufgabe zum Knobeln ===
 
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (***)|{{LearningApp|width=100%|height=500px|app=3920933}}|Üben
 
 
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 10: Knobelaufgabe|{{LearningApp|width=100%|height=500px|app=3920933}}|Arbeitsmethode
}}
}}

Aktuelle Version vom 22. April 2024, 07:07 Uhr

Schriftliches Addieren und Subtrahieren von natürlichen Zahlen

Icon-pencil-9576.svg
Aufgabe 1: Zahlenmauer

Fachbegriffe und Rechengesetze

Icon-pencil-9576.svg
Aufgabe 2: Fachbegriffe zur Addition und Subtraktion


Icon-Pinnnadel.svg
Merksatz zu Fachbegriffen

Addition

Grundbegriffe der Addition.png








Subtraktion

Subtraktio.png


Icon-pencil-9576.svg
Aufgabe 3: Die Rechengesetze


Icon-Pinnnadel.svg
Merksatz Vertauschungsgesetz (Kommutativgesetz)

Das Vertauschungsgesetz (Kommutativgesetz) besagt: Beim Addieren kannst du die Summanden vertauschen. Das Ergebnis bleibt gleich. Beispiel: 83 + 92 =92 + 83


Vorsicht bei der Subtraktion

Untersuche das Vertauschen bei der Subtraktion.

Beispiel:

100 - 50 + 45 = 95

100 - 45 + 50 = 105

Also ist 100 - 50 + 45 nicht das gleiche wie 100 - 45 + 50.

Beim Subtrahieren kannst du Minuend und Subtrahend nicht vertauschen. Das Vertauschen von Subtrahend und Minuend führt nicht zum richtigen Ergebniss.


Icon-Pinnnadel.svg
Merksatz Verbindungsgesetz (Assoziativgesetz)

Das Verbindungsgesetz (Assoziativgesetz) besagt: Beim Addieren kannst du beliebig Klammern setzen oder weglassen. Das Ergebnis bleibt gleich. (Hinweis: Du rechnest zuerst die Klammer wegen Klammer vor Punkt vor Strich aus).

Beispiel:

26 + 73 + 37 = (26 + 73) + 37

26 + 73 + 37 = 26 + (73 + 37)


Vorsicht bei der Subtraktion

Untersuche das Setzen von Klammern bei der Subtraktion.

Beispiel:

(123 - 73) - 27 = 50 - 27 = 23

123 - (73 - 27) = 123 - 46 = 77

Also ist (123 - 73) - 27 nicht das gleiche wie 123 - (73 - 27).

Beim Subtrahieren kannst du nicht beliebig Klammern setzen. Das Setzen von Klammern bei der Subtraktion führt zu unterschiedlichen Ergebnisse.



Addition von natürlichen Zahlen

Icon-pencil-9576.svg
Aufgabe 4: Schriftliches Addieren bis 1000

Löse die Aufgaben schriftlich mit Stift und Papier. Verbinde danach die Rechnungen mit den passenden Ergebnissen. Falls du etwas falsch verbindest kannst du auf den Tesa-Streifen, der die zwei Kärtchen zusammen hält klicken und die 2 Karten lösen sich.


Icon-pencil-9576.svg
Aufgabe 5: Schriftliches Addieren mit großen Zahlen


Icon-Pinnnadel.svg
Merksatz zur schriftlichen Addition

Die schriftliche Addition hilft dir, größere und mehrere Zahlen zu addieren.

Schreibe die Zahlen immer stellengerecht untereinander:

Einer unter Einer, Zehner unter Zehner, ...
Stellenwerttafel Addition.png

Es gibt zwei verschiedene Arten der schriftlichen Addition:

  • Die Addition ohne Übertrag
  • Die Addition mit Übertrag


Die Addition ohne Übertrag

Du beginnst mit der Addition rechts.

Beispiel:

Addition ohne Übertrag.png








Die Addition mit Übertrag

Du beginnst wieder rechts mit der Addition.

Beispiel:

Addition mit Übertrag.png

Subtraktion von natürlichen Zahlen

Icon-pencil-9576.svg
Aufgabe 6: Schriftliches Subtrahieren


Icon-pencil-9576.svg
Aufgabe 7: Schriftliches Subtrahieren mit großen Zahlen


Icon-Pinnnadel.svg
Merksatz zur schriftlichen Subtraktion

Die schriftliche Subtraktion hilft dir, größere und mehrere Zahlen zu subtrahieren.

Schreibe die Zahlen immer stellengerecht untereinander:

Einer unter Einer, Zehner unter Zehner, ...

Stellenwerttafel Subtraktion.png

Es gibt zwei verschiedene Arten der schriftlichen Subtraktion:

  • Die Subtraktion ohne Übertrag
  • Die Subtraktion mit Übertrag


Die Subtraktion ohne Übertrag

Du beginnst mit der Subtraktion rechts. Die untere Zahl wird dabei zur oberen Zahl ergänzt.

Beispiel:

Subtraktion ohne Übertrag.png










Die Subtraktion mit Übertrag

Du beginnst wieder rechts mit der Subtraktion.

Beispiel:

Subtraktion mit Übertrag.png




Gemischte Aufgaben (Addition, Subtraktion, Fachbegriffe)

Hinweis: Verfahren bei Textaufgaben

Suche bei Anwendungsaufgaben nach Signalwörtern. Übersetze den Text in eine Rechnung, rechne aus und schreibe einen Antwortsatz in dein Heft.




Icon-pencil-9576.svg
Aufgabe 8: Waffelverkauf
Waffelverkauf.png
Die 6b hat 120 € in der Klassenkasse. Mit einem Waffelverkauf hat die 6b 48 € verdient. Für ihr Sommerfest gibt die Klasse 80 € für Getränke und Essen aus. Wie viel Geld hat die 6b nach dem Sommerfest in der Klassenkasse?





Icon-pencil-9576.svg
Aufgabe 9: Laufen
Laufen.png

Aysen trainiert und läuft dreimal in der Woche. Am Montag läuft sie 2 km, am Mittwoch 3 km, aber am Freitag nur 800 m. Wie viel ist sie am Ende der Woche gelaufen?




Icon-pencil-9576.svg
Aufgabe 10: Knobelaufgabe