Herta-Lebenstein-Realschule/Lineare Funktionen im Aktiv-Urlaub/2.2 Funktionsgleichung und Funktionsgraph: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(32 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]] | |||
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | {{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | ||
<br> | <br> | ||
Zeile 44: | Zeile 45: | ||
{{#ev:youtube| EfPX2lmay0c}} | {{#ev:youtube| EfPX2lmay0c}} | ||
{{Box|Übung 1|Bearbeite das nachfolgende Applet. Löse mindestens 5 Aufgaben.|Üben}} | {{Box|Übung 1|Bearbeite das nachfolgende Applet. Löse mindestens 5 Aufgaben.|Üben}} | ||
Originallink https://www.geogebra.org/m/ee7U2NGK | |||
<ggb_applet id="ee7U2NGK" width="1280" height="792" border="888888" /> | <ggb_applet id="ee7U2NGK" width="1280" height="792" border="888888" /> | ||
<small>Applet von Hans Scharrer, jkreitner</small> | <small>Applet von Hans Scharrer, jkreitner</small> | ||
Zeile 53: | Zeile 55: | ||
d) y = 2x + 1<br> | d) y = 2x + 1<br> | ||
e) y = 2x - 3<br> | e) y = 2x - 3<br> | ||
Fällt dir etwas auf? | Fällt dir etwas auf?<br> | ||
[[Datei:Wertetabellen für Aufgabe a-e.png|rahmenlos|500x500px]] | |||
|3=Üben}} | |||
{{Lösung versteckt|[[Datei:Lösung Übung 2 Lineare Funktionen.png|rahmenlos|611x611px]]<br> | {{Lösung versteckt|[[Datei:Lösung Übung 2 Lineare Funktionen.png|rahmenlos|611x611px]]<br> | ||
[[Datei:Lösung Übung 2 Lineare Funktionen 2.png|rahmenlos|600x600px]]|Vergleiche deine Graphen|Verbergen}} | [[Datei:Lösung Übung 2 Lineare Funktionen 2.png|rahmenlos|600x600px]]|Vergleiche deine Graphen|Verbergen}} | ||
Zeile 125: | Zeile 66: | ||
<br> | <br> | ||
Damit du einen Eindruck von der Bedeutung der Parameter m | Damit du einen Eindruck von der Bedeutung der Parameter '''m ''' und '''b''' der Funktionsgleichung linearer Funktionen '''f(x) = mx + b '''erhältst, verändere in der folgenden Animation mithilfe der Schieberegler die Werte von m und b. Notiere deine Beobachtungen stichpunktartig:<br> | ||
* Wenn ich den Wert von m verändere, ...<br> | |||
* Wenn ich den Wert von b verändere, ...<br> | |||
Originallink https://www.geogebra.org/m/gdvednbk | |||
<br><ggb_applet id="gdvednbk" width="700"" height="500" /> | <br><ggb_applet id="gdvednbk" width="700"" height="500" /> | ||
<br> | <br> | ||
Zeile 192: | Zeile 136: | ||
Untersuche mithilfe der Animation in GeoGebra die Steigung von Geraden. Du kannst mit den Schiebereglern m verändern. Außerdem kannst du das Steigungsdreieck durch Verschieben der Punkte A und B verändern. Beobachte, was geschieht. Probiere aus. | Untersuche mithilfe der Animation in GeoGebra die Steigung von Geraden. Du kannst mit den Schiebereglern m verändern. Außerdem kannst du das Steigungsdreieck durch Verschieben der Punkte A und B verändern. Beobachte, was geschieht. Probiere aus. | ||
Originallink https://www.geogebra.org/m/pjvps3st | |||
<ggb_applet id="pjvps3st" width="1458" height="900" border="888888" /> | <ggb_applet id="pjvps3st" width="1458" height="900" border="888888" /> | ||
Zeile 216: | Zeile 160: | ||
<br> | <br> | ||
{{Box|Übung 5|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/funktion/funktion.shtml '''Aufgabenfuchs'''] die Aufgabe | {{Box|Übung 5|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/funktion/funktion.shtml '''Aufgabenfuchs'''] die Aufgabe | ||
* | *18 | ||
*20 | |||
*21 | |||
*22 | |||
|Üben}} | |Üben}} | ||
Zeile 223: | Zeile 170: | ||
Das nachfolgende Video erklärt, wie du bei einem gegebenen Graphen ein Steigungsdreieck einzeichnest und damit die Steigung m bestimmst. <br> | Das nachfolgende Video erklärt, wie du bei einem gegebenen Graphen ein Steigungsdreieck einzeichnest und damit die Steigung m bestimmst. <br> | ||
<br> | <br> | ||
{{#ev:youtube|7zYsjAdTT5M|800|center | {{#ev:youtube|7zYsjAdTT5M|800|center}} | ||
<br> | <br> | ||
{{Box|Übung 6|Die Bilder zeigen dir noch einmal, wie du ein Steigungsdreieck einzeichnest und damit die Steigung m bestimmst.<br> | {{Box|Übung 6|Die Bilder zeigen dir noch einmal, wie du ein Steigungsdreieck einzeichnest und damit die Steigung m bestimmst.<br> | ||
Zeile 230: | Zeile 177: | ||
1. Beispiel: m ist eine positive ganze Zahl (also eine natürliche Zahl):<br> | 1. Beispiel: m ist eine positive ganze Zahl (also eine natürliche Zahl):<br> | ||
[[Datei:Steigungsdreieck m ganze Zahl (positiv).png|rahmenlos|500x500px]] | [[Datei:Steigungsdreieck m ganze Zahl (positiv).png|rahmenlos|500x500px]] | ||
{{LearningApp|app=p4u99frac21|width=100%|heigth= | {{LearningApp|app=p4u99frac21|width=100%|heigth=800px}} | ||
<br> | <br> | ||
<br> | <br> | ||
2. Beispiel: m ist eine negative ganze Zahl:<br> | 2. Beispiel: m ist eine negative ganze Zahl:<br> | ||
[[Datei:Steigungsdreieck m ganze Zahl (negativ).png|rahmenlos|500x500px]] | [[Datei:Steigungsdreieck m ganze Zahl (negativ).png|rahmenlos|500x500px]] | ||
{{LearningApp|app=p1e8uj53c21|width=100%|heigth= | {{LearningApp|app=p1e8uj53c21|width=100%|heigth=800px}} | ||
<br> | <br> | ||
<br> | <br> | ||
3. Beispiel: m ist ein Bruch (positiv):<br> | 3. Beispiel: m ist ein Bruch (positiv):<br> | ||
[[Datei:Steigungsdreieck m Bruch (positiv).png|rahmenlos|500x500px]] | [[Datei:Steigungsdreieck m Bruch (positiv).png|rahmenlos|500x500px]] | ||
{{LearningApp|app=pyy290xt521|width=100%|heigth= | {{LearningApp|app=pyy290xt521|width=100%|heigth=800px}} | ||
<br> | <br> | ||
<br> | <br> | ||
4. Beispiel: m ist ein Bruch (negativ):<br> | 4. Beispiel: m ist ein Bruch (negativ):<br> | ||
[[Datei:Steigungsdreieck m Bruch (negativ).png|rahmenlos|500x500px]] | [[Datei:Steigungsdreieck m Bruch (negativ).png|rahmenlos|500x500px]] | ||
{{LearningApp|app=pqf5b16sj21|width=100%|heigth= | {{LearningApp|app=pqf5b16sj21|width=100%|heigth=800px}} | ||
<br> | <br> | ||
<br> | <br> | ||
Zeile 403: | Zeile 350: | ||
Diese Gerade hat die Steigung m und schneidet die y-Achse im Punkt (0|b).<br> | Diese Gerade hat die Steigung m und schneidet die y-Achse im Punkt (0|b).<br> | ||
'''b''' ist der '''y-Achsenabschnitt'''.|3=Arbeitsmethode}} | '''b''' ist der '''y-Achsenabschnitt'''.|3=Arbeitsmethode}} | ||
{{#ev:youtube|4aUyOgoYJpc|800|center}} | |||
{{Box|Übung 14|Lies in der nachfolgenden App jeweils den y-Achsenabschnitt b am Graphen bzw. in der Funktionsgleichung ab.|Üben}} | {{Box|Übung 14|Lies in der nachfolgenden App jeweils den y-Achsenabschnitt b am Graphen bzw. in der Funktionsgleichung ab.|Üben}} | ||
Zeile 410: | Zeile 360: | ||
Im Weiteren betrachten wir lineare Funktionen f(x) = mx + b.<br> | Im Weiteren betrachten wir lineare Funktionen f(x) = mx + b.<br> | ||
Auch hier lernst du, wie du anhand eines Graphen die Funktionsgleichung bestimmst bzw. wie zu einer Funktionsgleichung eine passende Gerade zeichnen kannst.<br> | Auch hier lernst du, wie du anhand eines Graphen die Funktionsgleichung bestimmst bzw. wie du zu einer Funktionsgleichung eine passende Gerade zeichnen kannst.<br> | ||
<br> | <br> | ||
Zeile 422: | Zeile 372: | ||
</div> | </div> | ||
Und nun noch einmal übersichtlich als Bild: | |||
Beispiel 1 (leicht): m ist eine natürliche Zahl<br> | Und nun noch einmal übersichtlich als in GeoGebra und als Bild:<br> | ||
'''Beispiel 1 (leicht)''': m ist eine natürliche Zahl<br> | |||
Originallink https://www.geogebra.org/m/a2ew5np7 | |||
<ggb_applet id="a2ew5np7" width="1128" height="728" border="888888" /> | |||
<br> | |||
[[Datei:Funktionsgleichung einer Geraden bestimmen m=2.png|535x535px]] | [[Datei:Funktionsgleichung einer Geraden bestimmen m=2.png|535x535px]] | ||
<br> | <br> | ||
Beispiel 2 (mittel): m ist eine negative | '''Beispiel 2 (mittel)''': m ist eine negative Zahl <br> | ||
Originallink: https://www.geogebra.org/m/xc2p7wvk | |||
<ggb_applet id="xc2p7wvk" width="1128" height="728" border="888888" /> | |||
[[Datei:Funktionsgleichung einer Geraden bestimmen m=-1,5.png|528x528px]]<br> | [[Datei:Funktionsgleichung einer Geraden bestimmen m=-1,5.png|528x528px]]<br> | ||
Beispiel 3 (schwer): m ist ein Bruch <br> | '''Beispiel 3 (schwer)''': m ist ein Bruch <br> | ||
Originallink: https://www.geogebra.org/m/fnavjbgf | |||
<ggb_applet id="fnavjbgf" width="1128" height="728" border="888888" /><br> | |||
[[Datei:Funktionsgleichung einer Geraden bestimmen m=drei Fünftel.png|523x523px]] | [[Datei:Funktionsgleichung einer Geraden bestimmen m=drei Fünftel.png|523x523px]] | ||
{{Box|Übung 15: Bestimmen der Funktionsgleichung einer Geraden|Ordne den Geraden die Funktionsgleichung zu. Wähle eine passende Schwierigkeit aus.|Üben}} | {{Box|Übung 15: Bestimmen der Funktionsgleichung einer Geraden|Ordne den Geraden die Funktionsgleichung zu. Wähle eine passende Schwierigkeit aus.|Üben}} | ||
leicht (*)<br> | |||
{{LearningApp|app=phd8q7we221|width=100%|height=400px}}{{LearningApp|app=p2rwidw3t20|width=100%|height=400px}} | |||
mittel (**)<br> | |||
{{LearningApp|app=popvxxk2v21|width=100%|height=400px}}{{LearningApp|app=pw8bbo2st20|width=100%|height=400px}} | |||
schwer (***)<br> | |||
{{LearningApp|app=p5mxjgbpt21|width=100%|height=400px}}{{LearningApp|app=ppn4q2oe320|width=100%|height=400px}} | |||
<br> | <br> | ||
{{Box|1=Übung 16|2=Gib auf der Seite realmath jeweils die Funktionsgleichung f(x) = mx+b an. Bestimme dazu m und b, wie oben beschrieben. | {{Box|1=Übung 16|2=Gib auf der Seite realmath jeweils die Funktionsgleichung f(x) = mx+b an. Bestimme dazu m und b, wie oben beschrieben. | ||
Zeile 453: | Zeile 414: | ||
https://www.geogebra.org/classic/fuuc9dcy | https://www.geogebra.org/classic/fuuc9dcy | ||
|Tipp zu S. 129 Nr. 2|Verbergen}} | |Tipp zu S. 129 Nr. 2|Verbergen}} | ||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/ag3qdxdr | |||
<ggb_applet id="ag3qdxdr" width="1100" height="602" border="888888" />|2=Lösung zu Nr. 2 (GeoGebra-Applet)|3=Verbergen}} | |||
{{Lösung versteckt|1=Öffne das GeoGebra-Applet zu S. 129 Nr. 4 und verändere den Wert des Schiebereglers m. Stelle m so ein, dass der Graph g1, g2,... entspricht. Die Funktionsgleichung wird dir angezeigt. | {{Lösung versteckt|1=Öffne das GeoGebra-Applet zu S. 129 Nr. 4 und verändere den Wert des Schiebereglers m. Stelle m so ein, dass der Graph g1, g2,... entspricht. Die Funktionsgleichung wird dir angezeigt. | ||
https://www.geogebra.org/classic/qfasm3eg|2=Tipp zu S. 129 Nr. 4|3=Verbergen}} | https://www.geogebra.org/classic/qfasm3eg|2=Tipp zu S. 129 Nr. 4|3=Verbergen}} | ||
{{Lösung versteckt|Für g1 ist das Vorgehen noch einmal in einem Bild gezeigt, für g2, g3, usw. stellen die Schieberegler des GeoGebra-Applets so ein, dass der entsprechende Graph dargestellt ist. Die Funktionsgleichung wird dir dann angezeigt.{{Lösung versteckt|[[Datei:S. 130 Nr. 6 Tipp zu g1.png]]|Tipp zu g1|Verbergen}}{{Lösung versteckt|https://www.geogebra.org/classic/w8n4uabh|GeoGebra-Applet zu Nr. 6|Verbergen}}|Tipps zu S. 130 Nr. 6|Verbergen}} | {{Lösung versteckt|1=Originallink https://www.geogebra.org/m/ctqv9yaj | ||
<ggb_applet id="ctqv9yaj" width="1046" height="900" border="888888" />|2=Lösung zu Nr. 4 (GeoGebra-Applet)|3=Verbergen}} | |||
{{Lösung versteckt|Für g1 ist das Vorgehen noch einmal in einem Bild gezeigt, für g2, g3, usw. stellen die Schieberegler des GeoGebra-Applets so ein, dass der entsprechende Graph dargestellt ist. Die Funktionsgleichung wird dir dann angezeigt.{{Lösung versteckt|[[Datei:S. 130 Nr. 6 Tipp zu g1.png]]|Tipp zu g1|Verbergen}} | |||
{{Lösung versteckt|https://www.geogebra.org/classic/w8n4uabh|GeoGebra-Applet zu Nr. 6|Verbergen}}|Tipps zu S. 130 Nr. 6|Verbergen}} | |||
{{Lösung versteckt|Nutze auch hier das GeoGebra-Applet, um die Graphen nachzustellen und die Funktionsgleichung abzulesen | {{Lösung versteckt|Nutze auch hier das GeoGebra-Applet, um die Graphen nachzustellen und die Funktionsgleichung abzulesen | ||
https://www.geogebra.org/classic/w8n4uabh {{Lösung versteckt|[[Datei:S. 130 Nr. 7 Tipp Steigungsdreiecke.png]]|Tipp Steigungsdreiecke|Verbergen}} | https://www.geogebra.org/classic/w8n4uabh {{Lösung versteckt|[[Datei:S. 130 Nr. 7 Tipp Steigungsdreiecke.png]]|Tipp Steigungsdreiecke|Verbergen}} | ||
Zeile 469: | Zeile 435: | ||
3. Schritt: Zeichne die Gerade durch die so erhaltenen Punkte. | 3. Schritt: Zeichne die Gerade durch die so erhaltenen Punkte. | ||
Das Applet und die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = <math>{3 \over 5}</math>x - 1.<br> | |||
Originallink https://www.geogebra.org/m/s9x8635y | |||
<ggb_applet id="s9x8635y" width="1100" height="598" border="888888" /> | |||
<div class="grid"> | <div class="grid"> | ||
<div class="width-1-3">Schritt 1[[Datei:Gerade zur Gleichung zeichnen Schritt 1.png]]</div> | <div class="width-1-3">Schritt 1[[Datei:Gerade zur Gleichung zeichnen Schritt 1.png]]</div> | ||
Zeile 484: | Zeile 452: | ||
<br> | <br> | ||
{{Box|Übung 18 - online|Übe das Zeichnen von Geraden zu vorgegebenen linearen Funktionsgleichungen, bis du keine Schwierigkeiten mehr damit hast.|Üben}}<br> | {{Box|Übung 18 - online|Übe das Zeichnen von Geraden zu vorgegebenen linearen Funktionsgleichungen, bis du keine Schwierigkeiten mehr damit hast.|Üben}}<br> | ||
Originallink https://www.geogebra.org/m/pfcffnqs | |||
<ggb_applet id="fcgnxdsu" width="775" height="485" border="888888" /><br> | <ggb_applet id="fcgnxdsu" width="775" height="485" border="888888" /><br> | ||
Applet von Wolfgang Wengler<br> | Applet von Wolfgang Wengler<br> | ||
Zeile 495: | Zeile 464: | ||
{{Lösung versteckt|Zeichne zuerst den y-Achsenabschnitt b ein, von hier aus zeichne das Steigungsdreieck. Prüfe deine Zeichnung mit GeoGebra. | {{Lösung versteckt|Zeichne zuerst den y-Achsenabschnitt b ein, von hier aus zeichne das Steigungsdreieck. Prüfe deine Zeichnung mit GeoGebra. | ||
https://www.geogebra.org/graphing|Tipp zu S. 129 Nr. 5|Verbergen}} | https://www.geogebra.org/graphing|Tipp zu S. 129 Nr. 5|Verbergen}} | ||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/wy4qhueb | |||
<ggb_applet id="wy4qhueb" width="1130" height="731" border="888888" />|2=Nr. 5a Schritt für Schritt|3=Verbergen}} | |||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/fvenyj79 | |||
<ggb_applet id="fvenyj79" width="1130" height="731" border="888888" /> |2=Nr. 5b Schritt für Schritt|3=Verbergen}} | |||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/cruhp9tr | |||
<ggb_applet id="cruhp9tr" width="1130" height="731" border="888888" /> |2=Nr. 5c Schritt für Schritt|3=Verbergen}} | |||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/vcc3zanm | |||
<ggb_applet id="vcc3zanm" width="1130" height="731" border="888888" />|2=Nr. 5d Schritt für Schritt|3=Verbergen}} | |||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/rzyewmbv | |||
<ggb_applet id="rzyewmbv" width="1130" height="731" border="888888" /> |2=Nr. 5e Schritt für Schritt|3=Verbergen}} | |||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/bnjxws8p | |||
<ggb_applet id="bnjxws8p" width="1130" height="731" border="888888" />|2=Nr. 5f Schritt für Schritt|3=Verbergen}} | |||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/k6usqur6 | |||
<ggb_applet id="k6usqur6" width="1130" height="731" border="888888" />|2=Nr. 5g Schritt für Schritt|3=Verbergen}} | |||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/kervkr7h | |||
<ggb_applet id="kervkr7h" width="1130" height="731" border="888888" /> |2=Nr. 5h Schritt für Schritt|3=Verbergen}} | |||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/maxbhxac | |||
<ggb_applet id="maxbhxac" width="1114" height="634" border="888888" />|2=GeoGebra-Applet zu Nr. 8a|3=Verbergen}} | |||
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/nsytew2e | |||
<ggb_applet id="nsytew2e" width="1100" height="598" border="888888" />|2=GeoGebra-Applet zu Nr. 8b|3=Verbergen}} | |||
{{Lösung versteckt|Statt der Partnerarbeit erstelle eine Learningapp, in der den von dir gezeichneten Graphen die entsprechende Funktionsgleichung zugeordnet werden soll.<br> | {{Lösung versteckt|Statt der Partnerarbeit erstelle eine Learningapp, in der den von dir gezeichneten Graphen die entsprechende Funktionsgleichung zugeordnet werden soll.<br> | ||
Wenn du für die Steigung einen Bruch wählst, kannst du ihn bei den LearningApps auch so schreiben, wie du es aus dem Unterricht kennst, indem du statt 2/3 folgendes schreibst: $$\frac{2}{3}$$|S. 130 Nr. 8 Alternative zur Partnerarbeit|Verbergen}} | Wenn du für die Steigung einen Bruch wählst, kannst du ihn bei den LearningApps auch so schreiben, wie du es aus dem Unterricht kennst, indem du statt 2/3 folgendes schreibst: $$\frac{2}{3}$$|S. 130 Nr. 8 Alternative zur Partnerarbeit|Verbergen}} |
Aktuelle Version vom 20. März 2025, 16:43 Uhr
1 Zuordnungen und Funktionen
2 Lineare Funktionen
2.1 Lineare Funktionen erkennen und darstellen
2.2 Funktionsgleichung und Funktionsgraph
2.3 Wertetabelle und Funktionsgleichung
Wertetabelle und Funktionsgraph
Das Video fasst das Vorgehen noch einmal zusammen:
Originallink https://www.geogebra.org/m/ee7U2NGK

Applet von Hans Scharrer, jkreitner
Funktionsgleichung und Funktionsgraph
f(x) = mx + b Bedeutung von m und b für den Funktionsgraphen
Damit du einen Eindruck von der Bedeutung der Parameter m und b der Funktionsgleichung linearer Funktionen f(x) = mx + b erhältst, verändere in der folgenden Animation mithilfe der Schieberegler die Werte von m und b. Notiere deine Beobachtungen stichpunktartig:
- Wenn ich den Wert von m verändere, ...
- Wenn ich den Wert von b verändere, ...
Originallink https://www.geogebra.org/m/gdvednbk
Nun schauen wir uns die Steigung m genauer an. Dazu wählen wir den y-Achsenabschnitt b = 0, die Gerade geht also durch den Ursprung (0|0).
Erinnerung: Diese Funktionen heißen "proportionale Funktionen", da ihr Graph eine Ursprungsgerade ist.
Die Steigung m
Anschaulich vorstellen kannst du dir, dass die Funktion steigt, wenn der Wanderer den Berg hochsteigen muss.
Fällt die Funktion, "fällt" der Wanderer bergab.
Um zu unterscheiden, ob eine Gerade steil oder flach verläuft (steigt oder fällt), beobachte in der nächsten Simulation den Maulwurf, der seinen Maulwurfshügel hinaufklettert.
Wenn die Steigung m steil ist, muss der Maulwurf sehr mutig sein!
Fülle den nachfolgenden Lückentext aus und übertrage ihn in dein Heft:
Die Steigung m einer proportionalen (linearen) Funktion f(x) = mx bestimmt den Verlauf der Geraden:
Für steigt die Gerade und für fällt die Gerade.
Die Gerade steigt flach für und steil für .
Die Gerade fällt flach für und steil für .
m > 0-1 < m < 0m < 00 < m < 1m < -1m > 1
Teste dein Wissen mit einem Kahoot (im Unterricht).
Das Steigungsdreieck
Untersuche mithilfe der Animation in GeoGebra die Steigung von Geraden. Du kannst mit den Schiebereglern m verändern. Außerdem kannst du das Steigungsdreieck durch Verschieben der Punkte A und B verändern. Beobachte, was geschieht. Probiere aus. Originallink https://www.geogebra.org/m/pjvps3st
Beobachtung: Die Steigung m einer linearen Funktion können wir mit einem Steigungsdreieck ermitteln und darstellen. Dazu zeichnen wir von einem beliebigen Punkt auf der Geraden ein Dreieck zu einem anderen Punkt auf der Geraden, bei dem die eine Seite parallel zur x-Achse liegt und die andere parallel zur y-Achse. Gehen wir dabei genau 1 Einheit in x-Richtung, steigt (oder fällt) der y-Wert immer um den Wert m, die Steigung.
Egal, wie das Steigungsdreieck gezeichnet wird, der Quotient aus bleibt immer gleich, dies ist die Steigung m.
Originallink zum Applet: https://www.geogebra.org/m/gjbxvqr5
Du kannst das jeweilige Steigungsdreieck einblenden lassen. Verschiebe das Steigungsdreieck durch Verschieben der angezeigten Punkte. Diskutiere deine Beobachtungen mit deinem Partner/deiner Partnerin.
Applet von Buß-Haskert
Die Steigung m eines Graphen ablesen
Ist der Graph einer linearen Funktion gegeben (also eine Gerade im Koordinatensystem), kannst du die Steigung m mithilfe eines Steigungsdreiecks bestimmen.
Das nachfolgende Video erklärt, wie du bei einem gegebenen Graphen ein Steigungsdreieck einzeichnest und damit die Steigung m bestimmst.
1. Beispiel: m ist eine positive ganze Zahl (also eine natürliche Zahl):
2. Beispiel: m ist eine negative ganze Zahl:
3. Beispiel: m ist ein Bruch (positiv):
4. Beispiel: m ist ein Bruch (negativ):
Teste dein Wissen mit einem Kahoot (im Unterricht).
x | 1 | 2 | 3 | ... |
y-Strecke | 5 | 10 | ... | |
y-Eintrittskosten | 13 | ... | ||
y-Trainingskosten | ... |
Den Graphen zeichnen mit einem Steigungsdreieck
Ist die Funktionsgleichung einer proportionalen Funktion gegeben, kannst du den Graphen (also eine Ursprungsgerade) mithilfe eines Steigungsdreiecks zeichnen.
Das nachfolgende Video erklärt, wie du bei gegebener Steigung mit dem Steigungsdreieck den Graphen (Ursprungsgerade) einer proportionalen Funktion zeichnest.
Zusammenfassung: Schau dazu das nachfolgende Video zu Steigungsdreiecken an:
Der y-Achsenabschnitt b
Lineare Funktionen: f(x) = m·x + b
Nachdem wir uns ausführlich mit der Bedeutung von m, also der Steigung einer linearen Funktion beschäftigt haben, schau noch einmal im Applet, welche Bedeutung der Parameter b für den Graphen der Funktion hat.
Im Weiteren betrachten wir lineare Funktionen f(x) = mx + b.
Auch hier lernst du, wie du anhand eines Graphen die Funktionsgleichung bestimmst bzw. wie du zu einer Funktionsgleichung eine passende Gerade zeichnen kannst.
Von der Geraden zu Funktionsgleichung
Und nun noch einmal übersichtlich als in GeoGebra und als Bild:
Beispiel 1 (leicht): m ist eine natürliche Zahl
Originallink https://www.geogebra.org/m/a2ew5np7
Beispiel 2 (mittel): m ist eine negative Zahl
Originallink: https://www.geogebra.org/m/xc2p7wvk
Beispiel 3 (schwer): m ist ein Bruch
Originallink: https://www.geogebra.org/m/fnavjbgf

leicht (*)
mittel (**)
schwer (***)
Von der Funktionsgleichung zur Geraden
Dabei gehst du ähnlich vor, wie beim Bestimmen der Funktionsgleichung.
1. Schritt: Zeichne den y-Achsenabschnitt b ein: P(0|b)
2. Schritt: Zeichne das Steigungsdreieck ein. Starte im Punkt P. Der Nenner gibt an, wie viele Einheiten du nach rechts gehst, der Zähler, wie viele Einheiten nach oben (unten).
3. Schritt: Zeichne die Gerade durch die so erhaltenen Punkte.
Das Applet und die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = x - 1.
Originallink https://www.geogebra.org/m/s9x8635y

Übertrage das Beispiel mit den Anmerkungen in dein Heft!
Die Videos zeigen das Vorgehen noch einmal:
Originallink https://www.geogebra.org/m/pfcffnqs

Applet von Wolfgang Wengler