Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in allgemeinen Dreiecken: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(61 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | {{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | ||
<br> | <br> | ||
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]] | |||
{{Navigation|[[Benutzer:Buss-Haskert/Trigonometrie|Startseite (Vorwissen)]]<br> | {{Navigation|[[Benutzer:Buss-Haskert/Trigonometrie|Startseite (Vorwissen)]]<br> | ||
[[Benutzer:Buss-Haskert/Trigonometrie/Sinus,Kosinus,Tangens|1) Sinus, Kosinus, Tangens]]<br> | [[Benutzer:Buss-Haskert/Trigonometrie/Sinus,Kosinus,Tangens|1) Sinus, Kosinus, Tangens]]<br> | ||
[[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in rechtwinkligen Dreiecken|2) Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken]]<br> | [[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in rechtwinkligen Dreiecken|2) Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken]]<br> | ||
[[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in allgemeinen Dreiecken|3) Berechnungen in allgemeinen Dreiecken]]<br> | [[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in allgemeinen Dreiecken|3) Berechnungen in allgemeinen Dreiecken]]<br> | ||
[[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in beliebigen Figuren|4) Berechnungen in beliebigen Figuren]]}} | [[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in beliebigen Figuren|4) Berechnungen in beliebigen Figuren]]<br> | ||
[[Benutzer:Buss-Haskert/Trigonometrie/Sinusfunktion|5) Sinusfunktion und Kosinusfunktion]]}} | |||
<br> | <br> | ||
Zeile 31: | Zeile 32: | ||
γ = 180° - α - β<br> | γ = 180° - α - β<br> | ||
= 180° - 42° - 62°<br> | = 180° - 42° - 62°<br> | ||
= 76°<br></div> | = 76°<br> | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3"> | ||
② Berechne h<sub>a</sub>:<br> | ② Berechne h<sub>a</sub>:<br> | ||
Zeile 37: | Zeile 39: | ||
c · sin β = h<sub>a</sub> <br> | c · sin β = h<sub>a</sub> <br> | ||
8,5 · sin(42°) = h<sub>a</sub> <br> | 8,5 · sin(42°) = h<sub>a</sub> <br> | ||
5,7 (cm) | 5,7 (cm) ≈ h<sub>a</sub> | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3"> | ||
③ Berechne b:<br> | ③ Berechne b:<br> | ||
Zeile 44: | Zeile 47: | ||
b = <math>\tfrac{h_a}{sin\gamma}</math> <br> | b = <math>\tfrac{h_a}{sin\gamma}</math> <br> | ||
b = <math>\tfrac{\text{5,7}}{\text{sin(76°)}}</math> <br> | b = <math>\tfrac{\text{5,7}}{\text{sin(76°)}}</math> <br> | ||
b | b ≈ 5,9 (cm)<br> | ||
</div> | |||
</div> | </div> | ||
<br> | <br> | ||
<div class="grid"> | |||
<div class="width-1-3"> | |||
Berechne a:<br> | Berechne a:<br> | ||
④ Berechne a<sub>1</sub>:<br> | |||
cos β = <math>\tfrac{a_1}{c}</math> | ·c<br> | cos β = <math>\tfrac{a_1}{c}</math> | ·c<br> | ||
c · cos β = a<sub>1</sub><br> | c · cos β = a<sub>1</sub><br> | ||
8,5 · cos (42°) = a<sub>1</sub><br> | 8,5 · cos (42°) = a<sub>1</sub><br> | ||
6,3 (cm) <math>\approx</math>a<sub>1</sub></div> | 6,3 (cm) <math>\approx</math>a<sub>1</sub> | ||
<div class="width-1-3">⑤ Berechne a<sub>2</sub>: | </div> | ||
cos γ = <math>\tfrac{a_2}{b}</math> | | <div class="width-1-3"> | ||
⑤ Berechne a<sub>2</sub>:<br> | |||
cos γ = <math>\tfrac{a_2}{b}</math> | ·b<br> | |||
b · cos γ = a<sub>2</sub> <br> | b · cos γ = a<sub>2</sub> <br> | ||
5,9 · cos (76°) = a<sub>2</sub><br> | 5,9 · cos (76°) = a<sub>2</sub><br> | ||
1,4 (cm) <math>\approx</math> a<sub>2</sub></div> | 1,4 (cm) <math>\approx</math> a<sub>2</sub> | ||
<div class="width-1-3">⑥ Berechne a:<br> | </div> | ||
<div class="width-1-3"> | |||
⑥ Berechne a:<br> | |||
a = a<sub>1</sub> + a<sub>2</sub> <br> | a = a<sub>1</sub> + a<sub>2</sub> <br> | ||
= 6,3 + 1,4 <br> | = 6,3 + 1,4 <br> | ||
= 7,7 (cm)</div> | = 7,7 (cm) | ||
</div> | |||
</div> | </div> | ||
<br> | <br> | ||
Zeile 77: | Zeile 87: | ||
γ = 180° - α - β<br> | γ = 180° - α - β<br> | ||
= 180° - 42° - 62°<br> | = 180° - 42° - 62°<br> | ||
= 76°<br></div> | = 76°<br> | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3"> | ||
② Berechne h<sub>b</sub>:<br> | ② Berechne h<sub>b</sub>: <br> | ||
sin α = <math>\tfrac{h_b}{c}</math> | ·c<br> | sin α = <math>\tfrac{h_b}{c}</math> | ·c<br> | ||
c · sin α = h<sub>b</sub> <br> | c · sin α = h<sub>b</sub> <br> | ||
8,5 · sin(62°) = h<sub>b</sub> <br> | 8,5 · sin(62°) = h<sub>b</sub> <br> | ||
7,5 (cm) <math>\approx</math> h<sub>b</sub> </div> | 7,5 (cm) <math>\approx</math> h<sub>b</sub> | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3"> | ||
③ Berechne a:<br> | ③ Berechne a:<br> | ||
Zeile 90: | Zeile 102: | ||
a = <math>\tfrac{h_b}{sin\gamma}</math> <br> | a = <math>\tfrac{h_b}{sin\gamma}</math> <br> | ||
a = <math>\tfrac{\text{7,5}}{\text{sin(76°)}}</math> <br> | a = <math>\tfrac{\text{7,5}}{\text{sin(76°)}}</math> <br> | ||
a <math>\approx</math> 7,7 (cm)<br | a <math>\approx</math> 7,7 (cm)<br> | ||
</div> | </div> | ||
</div> | |||
<div class="grid"> | |||
<div class="width-1-3"> | |||
Berechne b:<br> | Berechne b:<br> | ||
④ Berechne b<sub>1</sub>:<br> | |||
cos α = <math>\tfrac{b_1}{c}</math> | ·c<br> | cos α = <math>\tfrac{b_1}{c}</math> | ·c<br> | ||
c · cos α = b<sub>1</sub><br> | c · cos α = b<sub>1</sub><br> | ||
8,5 · cos (62°) = b<sub>1</sub><br> | 8,5 · cos (62°) = b<sub>1</sub><br> | ||
4,0 (cm) <math>\approx</math> | 4,0 (cm) <math>\approx</math>b<sub>1</sub> | ||
<div class="width-1-3">⑤ Berechne b<sub>2</sub>: | </div> | ||
cos γ = <math>\tfrac{b_2}{a}</math> | | <div class="width-1-3"> | ||
⑤ Berechne b<sub>2</sub>:<br> | |||
cos γ = <math>\tfrac{b_2}{a}</math> | ·a<br> | |||
a · cos γ = b<sub>2</sub> <br> | a · cos γ = b<sub>2</sub> <br> | ||
7,7 · cos (76°) = b<sub>2</sub><br> | 7,7 · cos (76°) = b<sub>2</sub><br> | ||
1,9 (cm) <math>\approx</math> b<sub>2</sub></div> | 1,9 (cm) <math>\approx</math> b<sub>2</sub> | ||
</div> | |||
<div class="width-1-3">⑥ Berechne b:<br> | <div class="width-1-3"> | ||
⑥ Berechne b:<br> | |||
b = b<sub>1</sub> + b<sub>2</sub> <br> | b = b<sub>1</sub> + b<sub>2</sub> <br> | ||
= 4,0 + 1,9 <br> | = 4,0 + 1,9 <br> | ||
= 5,9 (cm)</div> | = 5,9 (cm) | ||
</div> | |||
</div> | </div> | ||
<br> | <br> | ||
Zeile 125: | Zeile 142: | ||
b · sin γ = h<sub>a</sub> <br> | b · sin γ = h<sub>a</sub> <br> | ||
5,8 · sin(65°) = h<sub>a</sub><br> | 5,8 · sin(65°) = h<sub>a</sub><br> | ||
5, | 5,3 (cm) <math>\approx</math> h<sub>a</sub> <br> | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3"> | ||
② Bestimme a<sub>2</sub><br> | ② Bestimme a<sub>2</sub><br> | ||
Zeile 131: | Zeile 149: | ||
b · cos γ = a<sub>2</sub> <br> | b · cos γ = a<sub>2</sub> <br> | ||
5,8 · cos(65°) = a<sub>2</sub><br> | 5,8 · cos(65°) = a<sub>2</sub><br> | ||
2,5 (cm) <math>\approx</math> a<sub>2</sub> <br></div> | 2,5 (cm) <math>\approx</math> a<sub>2</sub> <br> | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3"> | ||
③ Bestimme a<sub>1</sub><br> | ③ Bestimme a<sub>1</sub><br> | ||
a – a<sub>2</sub>= a<sub>1</sub> <br> | a – a<sub>2</sub>= a<sub>1</sub> <br> | ||
8,2 - | 8,2 - 2,5 = a<sub>1</sub> <br> | ||
5,7 (cm) = a<sub>1</sub><br> | 5,7 (cm) = a<sub>1</sub><br> | ||
</div> | |||
</div> | </div> | ||
<div class="grid"> | <div class="grid"> | ||
Zeile 143: | Zeile 163: | ||
tan β = <math>\tfrac{h_a}{a_1}</math><br> | tan β = <math>\tfrac{h_a}{a_1}</math><br> | ||
tan β = <math>\tfrac{5,2}{5,7}</math> |tan<sup>-1</sup><br> | tan β = <math>\tfrac{5,2}{5,7}</math> |tan<sup>-1</sup><br> | ||
β <math>\approx</math> 42,4°<br></div> | β <math>\approx</math> 42,4°<br> | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3"> | ||
Zeile 164: | Zeile 185: | ||
α = 180° - 42,4° - 65°<br> | α = 180° - 42,4° - 65°<br> | ||
α = 72,6° | α = 72,6° | ||
<br></div> | <br> | ||
</div> | |||
</div> | </div> | ||
Zeile 174: | Zeile 196: | ||
</div> | </div> | ||
<br> | <br> | ||
<div class="grid"> | |||
<div class="width-1-3"> | |||
① Bestimme h<sub>b</sub>:<br> | ① Bestimme h<sub>b</sub>:<br> | ||
sin γ = <math>\tfrac{h_b}{a}</math> |·a<br> | sin γ = <math>\tfrac{h_b}{a}</math> |·a<br> | ||
Zeile 179: | Zeile 203: | ||
8,2 · sin(65°) = h<sub>b</sub><br> | 8,2 · sin(65°) = h<sub>b</sub><br> | ||
7,4 (cm) <math>\approx</math> h<sub>b</sub> <br> | 7,4 (cm) <math>\approx</math> h<sub>b</sub> <br> | ||
</div> | |||
<div class="width-1-3"> | |||
② Bestimme b<sub>2</sub><br> | ② Bestimme b<sub>2</sub><br> | ||
cos γ = <math>\tfrac{b_2}{a}</math> |·a<br> | cos γ = <math>\tfrac{b_2}{a}</math> |·a<br> | ||
Zeile 185: | Zeile 210: | ||
8,2 · cos(65°) = b<sub>2</sub><br> | 8,2 · cos(65°) = b<sub>2</sub><br> | ||
3,5 (cm) <math>\approx</math> b<sub>2</sub> <br> | 3,5 (cm) <math>\approx</math> b<sub>2</sub> <br> | ||
</div> | |||
<div class="width-1-3"> | |||
③ Bestimme b<sub>1</sub><br> | ③ Bestimme b<sub>1</sub><br> | ||
b – b<sub>2</sub>= b<sub>1</sub> <br> | b – b<sub>2</sub>= b<sub>1</sub> <br> | ||
5,8 - 3,5 = b<sub>1</sub> <br> | 5,8 - 3,5 = b<sub>1</sub> <br> | ||
2,3 (cm) = b<sub>1</sub><br> | 2,3 (cm) = b<sub>1</sub><br> | ||
</div> | |||
</div> | |||
<div class="grid"> | |||
<div class="width-1-3"> | |||
④ Bestimme α<br> | ④ Bestimme α<br> | ||
tan α = <math>\tfrac{h_b}{b_1}</math><br> | tan α = <math>\tfrac{h_b}{b_1}</math><br> | ||
tan α = <math>\tfrac{7,4}{2,3}</math> |tan<sup>-1</sup><br> | tan α = <math>\tfrac{7,4}{2,3}</math> |tan<sup>-1</sup><br> | ||
α <math>\approx</math> 72,7°<br> | α <math>\approx</math> 72,7°<br> | ||
</div> | |||
<div class="width-1-3"> | |||
⑤ Bestimme c<br> | ⑤ Bestimme c<br> | ||
sin α = <math>\tfrac{h_b}{c}</math> |·c<br> | sin α = <math>\tfrac{h_b}{c}</math> |·c<br> | ||
c · sin α = h<sub>b</sub> |: sin α<br> | c · sin α = h<sub>b</sub> |: sin α<br> | ||
c = <math>\tfrac{h_b}{sin\alpha}</math><br> | c = <math>\tfrac{h_b}{sin\alpha}</math><br> | ||
c = <math>\tfrac{\text{7,4}}{\text{sin (72,7°)}}</math><br> | c = <math>\tfrac{\text{7,4}}{\text{sin (72,7°)}}</math><br> | ||
c <math>\approx</math> 7,8 (cm) <br>< | c <math>\approx</math> 7,8 (cm) <br> | ||
ODER:<br> | |||
c² = <math>h_b^2 + b_1^2</math> |<math>\surd</math><br> | |||
c= <math>\sqrt{h_b^2 + b_1^2}</math><br> | c= <math>\sqrt{h_b^2 + b_1^2}</math><br> | ||
c = <math>\sqrt{7,4^2 + 2,3^2}</math><br> | c = <math>\sqrt{7,4^2 + 2,3^2}</math><br> | ||
c <math>\approx</math> 7,7 (cm) | c <math>\approx</math> 7,7 (cm) | ||
</div> | </div> | ||
< | <div class="width-1-3"> | ||
⑥ Bestimme den letzten Winkel β <br> | ⑥ Bestimme den letzten Winkel β <br> | ||
Winkelsumme<br> | Winkelsumme<br> | ||
Zeile 215: | Zeile 244: | ||
β = 180° - α - γ <br> | β = 180° - α - γ <br> | ||
β= 180° - 72,7° - 65°<br> | β= 180° - 72,7° - 65°<br> | ||
β = 42,3° | β = 42,3°</div> | ||
<br> | </div><br> | ||
<br> | <br> | ||
Du merkst, es kommt zu Rundungsungenauigkeiten.<br> | Du merkst, es kommt zu Rundungsungenauigkeiten.<br> | ||
Zeile 232: | Zeile 261: | ||
sin α = <math>\tfrac{h_c}{b}</math> |·b<br> | sin α = <math>\tfrac{h_c}{b}</math> |·b<br> | ||
b · sin α = h<sub>c</sub> <br> | b · sin α = h<sub>c</sub> <br> | ||
10,5 · sin(37°) = h<sub> | 10,5 · sin(37°) = h<sub>c</sub><br> | ||
6,3 (cm) <math>\approx</math> h<sub>c</sub> <br></div> | 6,3 (cm) <math>\approx</math> h<sub>c</sub> <br> | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3"> | ||
② Bestimme c<sub>1</sub><br> | ② Bestimme c<sub>1</sub><br> | ||
Zeile 239: | Zeile 269: | ||
b · cos α = c<sub>1</sub> <br> | b · cos α = c<sub>1</sub> <br> | ||
10,5 · cos(37°) = c<sub>1</sub><br> | 10,5 · cos(37°) = c<sub>1</sub><br> | ||
8,4 (cm) <math>\approx</math> c<sub>1</sub> <br></div> | 8,4 (cm) <math>\approx</math> c<sub>1</sub> <br> | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3"> | ||
③ Bestimme c<sub>2</sub><br> | ③ Bestimme c<sub>2</sub><br> | ||
<math>h_c^2 + c_2^2</math> = a² |-<math>h_c^2 </math><br> | <math>h_c^2 + c_2^2</math> = a² |-<math>h_c^2 </math><br> | ||
<math>c_2^2</math> = a² - <math>h_c^2</math> |<math>\surd</math><br> | <math>c_2^2</math> = a² - <math>h_c^2</math> |<math>\surd</math><br> | ||
c<sub>2</sub>= <math>\sqrt{a^2 - | c<sub>2</sub>= <math>\sqrt{a^2 - h_c^2}</math><br> | ||
c<sub>2</sub> = <math>\sqrt{7^2 - 6,3^2}</math><br> | c<sub>2</sub> = <math>\sqrt{7^2 - 6,3^2}</math><br> | ||
c<sub>2</sub> <math>\approx</math> 3,1 (cm)<br | c<sub>2</sub> <math>\approx</math> 3,1 (cm)<br> | ||
</div> | </div> | ||
</div> | |||
<br> | |||
<div class="grid"> | <div class="grid"> | ||
<div class="width-1-3"> | <div class="width-1-3"> | ||
④ Bestimme c: | ④ Bestimme c:<br> | ||
c = c<sub>1</sub> + c<sub>2</sub><br> | c = c<sub>1</sub> + c<sub>2</sub><br> | ||
= 8,4 + 3,1<br> | = 8,4 + 3,1<br> | ||
= 11,5 (cm) | = 11,5 (cm)</div> | ||
<div class="width-1-3"> | <div class="width-1-3"> | ||
⑤ Bestimme β<br> | ⑤ Bestimme β<br> | ||
sin β = <math>\tfrac{h_c}{a}</math><br> | sin β = <math>\tfrac{h_c}{a}</math><br> | ||
sin β = <math>\tfrac{6,3}{7}</math> |sin<sup>-1</sup><br> | sin β = <math>\tfrac{6,3}{7}</math> |sin<sup>-1</sup><br> | ||
β <math>\approx</math> 64,2° | β <math>\approx</math> 64,2° | ||
</div> | |||
<div class="width-1-3"> | <div class="width-1-3">⑥ Bestimme den letzten Winkel γ<br> | ||
⑥ Bestimme den letzten Winkel γ<br> | |||
Winkelsumme<br> | Winkelsumme<br> | ||
α + β + γ = 180° |- α; -β<br> | α + β + γ = 180° |- α; -β<br> | ||
γ = 180° - β - | γ = 180° - β - α<br> | ||
γ= 180° - 37° - 64,2°<br> | γ= 180° - 37° - 64,2°<br> | ||
γ = 78,8°</div> | γ = 78,8° | ||
</div> | |||
</div> | </div> | ||
Zeile 275: | Zeile 309: | ||
{{Box|Übung 1 (online und im Heft)|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die folgenden Aufgaben. Notiere zu jeder Aufgabe eine Lösung ausführlich mit Skizze und Rechnung in deinem Heft. | {{Box|Übung 1 (online und im Heft)|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die folgenden Aufgaben. Notiere zu jeder Aufgabe eine Lösung ausführlich mit Skizze und Rechnung in deinem Heft. | ||
* | * 45 | ||
* | * 46|Üben}} | ||
{{Box|Übung 2|Löse die Aufgaben aus dem Buch. Zeichne die Skizze in dein Heft und zerlege das allgemeine Dreieck durch eine geeignete Höhe in zwei rechtwinklige Dreiecke. Bestimme dann die fehlenden Größen. | {{Box|Übung 2|Löse die Aufgaben aus dem Buch. Zeichne die Skizze in dein Heft und zerlege das allgemeine Dreieck durch eine geeignete Höhe in zwei rechtwinklige Dreiecke. Bestimme dann die fehlenden Größen. | ||
* S. 99 Nr. 1 | * S. 99 Nr. 1 | ||
Zeile 288: | Zeile 322: | ||
===3.4 Anwendungsaufgaben=== | ===3.4 Anwendungsaufgaben=== | ||
{{Box|Übung 3 (online und im Heft)|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die folgenden Aufgaben. Notiere zu jeder Aufgabe eine Lösung ausführlich mit Skizze und Rechnung in deinem Heft. | {{Box|Übung 3 (online und im Heft)|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die folgenden Aufgaben. Notiere zu jeder Aufgabe eine Lösung ausführlich mit Skizze und Rechnung in deinem Heft. | ||
* | * 47 | ||
* | * 48|Üben}} | ||
{{Lösung versteckt|Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann den fehlenden Winkel, die Länge der entsprechenden Höhe und die Längen der Seiten a und b.<br> | {{Lösung versteckt|Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann den fehlenden Winkel, die Länge der entsprechenden Höhe und die Längen der Seiten a und b.<br> | ||
[[Datei:Skizze zu Nr. 63.png|rahmenlos]]<br> | [[Datei:Skizze zu Nr. 63.png|rahmenlos]]<br> | ||
[[Datei:Skizze 2 zu Nr. 63.png|rahmenlos]] oder [[Datei:Skizze 3 zu Nr. 63.png|rahmenlos]]<br> | [[Datei:Skizze 2 zu Nr. 63.png|rahmenlos]] oder [[Datei:Skizze 3 zu Nr. 63.png|rahmenlos]]<br> | ||
Prüfe deine Lösungen auf der Seite Aufgabenfuchs.|Tipp zu Nr. | Prüfe deine Lösungen auf der Seite Aufgabenfuchs.|Tipp zu Nr. 47|Verbergen}} | ||
{{Lösung versteckt|Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann schrittweise die fehlenden Größen.<br> | {{Lösung versteckt|Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann schrittweise die fehlenden Größen.<br> | ||
[[Datei:Skizze zu Nr. 64.png|rahmenlos]] <br> | [[Datei:Skizze zu Nr. 64.png|rahmenlos]] <br> | ||
[[Datei:Skizze zu Nr. 64 1.png|rahmenlos]] oder [[Datei:Skizze zu Nr. 64 2.png|rahmenlos]]<br> | [[Datei:Skizze zu Nr. 64 1.png|rahmenlos]] oder [[Datei:Skizze zu Nr. 64 2.png|rahmenlos]]<br> | ||
Prüfe dein Ergebnis auf der Seite Aufgabenfuchs.|Tipp zu Nr. | Prüfe dein Ergebnis auf der Seite Aufgabenfuchs.|Tipp zu Nr. 48|Verbergen}} | ||
Zeile 321: | Zeile 355: | ||
{{Lösung versteckt|1=Betrachte zur Lösung das linke Dreieck BCL. Gegeben ist nun auch aus Teil a) die Länge der Strecke a = 3,63 sm. Berechne den Nebenwinkel β<sub>2</sub> von β und den Winkel δ<sub>2</sub> mihilfe der Winkelsumme. Zerlege auch dieses Dreieck wieder in zwei rechtwinklige Teildreiecke. Die Skizze hilft dir, die nötigen Rechenschritte zu planen.<br> | {{Lösung versteckt|1=Betrachte zur Lösung das linke Dreieck BCL. Gegeben ist nun auch aus Teil a) die Länge der Strecke a = 3,63 sm. Berechne den Nebenwinkel β<sub>2</sub> von β und den Winkel δ<sub>2</sub> mihilfe der Winkelsumme. Zerlege auch dieses Dreieck wieder in zwei rechtwinklige Teildreiecke. Die Skizze hilft dir, die nötigen Rechenschritte zu planen.<br> | ||
[[Datei:Skizze zu S. 100 Nr. 8b.png|rahmenlos]]<br> | [[Datei:Skizze zu S. 100 Nr. 8b.png|rahmenlos]]<br> | ||
(Lösung: h<sub>e</sub> = 1,92 sm; | (Lösung: h<sub>e</sub> = 1,92 sm; d = 3,51 sm)|2=Tipp zu 8b|3=Verbergen}} | ||
===3.5 Formel für den Flächeninhalt beliebiger Dreiecke (mit Sinus)=== | |||
====Zwischentest 4: Anwendung in einem beliebigen Dreieck==== | |||
<quiz display="simple"> | |||
{Im Losbergpark soll eine neue Brücke über den See gebaut werden. Berechne die Länge der Brücke. | |||
[[Datei:Trigonometrie Brücke Losbergpark.jpg|rahmenlos|500x500px]]} | |||
+ Länge ≈ 30,33 m | |||
- Länge ≈ 30,21 m | |||
</quiz> | |||
===3.5 Erweiterung: Formel für den Flächeninhalt beliebiger Dreiecke (mit Sinus)=== | |||
{{Box|Flächeninhaltsformel Dreieck (mit Sinus)|Gruppenarbeit: Arbeitet arbeitsteilig in 3er Gruppen.<br> | {{Box|Flächeninhaltsformel Dreieck (mit Sinus)|Gruppenarbeit: Arbeitet arbeitsteilig in 3er Gruppen.<br> | ||
Der Flächeninhalt von Dreiecken kann mit dem Sinus eines Winkels und zweier Seitenlängen bestimmt werden. | Der Flächeninhalt von Dreiecken kann mit dem Sinus eines Winkels und zweier Seitenlängen bestimmt werden. | ||
Die Herleitung der Formel ist auf der Seite realmath dargestellt. | Die Herleitung der Formel ist auf der Seite realmath dargestellt. | ||
Öffnet arbeitsteilig die Seite und leitet die Flächeninhaltsformel für ein Dreieck her. | Öffnet arbeitsteilig die Seite und leitet die Flächeninhaltsformel für ein Dreieck her. Notiert im Heft. | ||
* [https:// | * [https://realmath.de/Neues/10zwo/trigo/trigodreieckflach.php Link 1 zur Herleitung (realmath)] | ||
* [https:// | * [https://realmath.de/Neues/10zwo/trigo/trigodreieckflach2.php Link 2] | ||
* [https:// | * [https://realmath.de/Neues/10zwo/trigo/trigodreieckflach3.php Link 3] | ||
Welche Gemeinsamkeiten bzw. Unterschiede entdeckt ihr?|Arbeitsmethode}} | Welche Gemeinsamkeiten bzw. Unterschiede entdeckt ihr?|Arbeitsmethode}} | ||
{{Box|1=Flächeninhaltsformel für beliebige Dreiecke|2=[[Datei:Dreieck mit hc.png|rechts|rahmenlos]]Den Flächeninhalt eines (beliebigen) Dreiecks können wir mit den Formeln berechnen:<br> | |||
A = <math>\tfrac{1}{2}</math>·b·c·sinα<br>|3=Merksatz}} | |||
{{Lösung versteckt|1=Herleitung:<br> | |||
linkes Teildreieck: <br> | |||
sinα = <math>\tfrac{h_c}{b}</math> |·b<br> | |||
b·sinα = h<sub>c</sub><br> | |||
Flächeninhaltsformel:<br> | |||
A = <math>\tfrac{c\cdot h_c}{2}</math> | setze für h<sub>c</sub> = b·sinα ein<br> | |||
= <math>\tfrac{c\cdot b\cdot sin\alpha}{2}</math><br> | |||
= <math>\tfrac{1}{2}</math>b·c·sinα<br> | |||
Ebenso kannst du die Flächeninhaltsformeln für die anderen Seiten als Grundseiten herleiten.|2=Herleitung der Formel|3=Verbergen}} | |||
{{Box|Übung 5 (online)|Flächeninhalt von Dreiecken berechnen: | {{Box|Übung 5 (online)|Flächeninhalt von Dreiecken berechnen: | ||
* [https:// | * [https://realmath.de/Neues/10zwo/trigo/dreiecktrigo.php Übung (realmath)]|Üben}} | ||
{{Box|Übung 6|Löse die Aufgabe aus dem Buch. Notiere die Rechnungen übersichtlich und vollständig in deinem Heft. | {{Box|Übung 6|Löse die Aufgabe aus dem Buch. Notiere die Rechnungen übersichtlich und vollständig in deinem Heft. | ||
Zeile 341: | Zeile 401: | ||
* S. 111 Nr. 3|Üben}} | * S. 111 Nr. 3|Üben}} | ||
===3.6 Erweiterung: Sinussatz=== | |||
In allgemeinen Dreiecken gilt der Sinussatz. Kannst du ihn herleiten? Das nachfolgende Applet zeigt dies Schritt für Schritt:<br> | |||
Originallink https://www.geogebra.org/m/ynfadptm<br> | |||
<ggb_applet id="ynfadptm" width="990" height="787" border="888888" /><br> | |||
<small>Applet von Buß-Haskert</small> | |||
[[Datei:Dreieck mit hc.png|rechts|rahmenlos]]<br> | |||
<div class="grid"> | |||
<div class="width-1-2"> | |||
linkes Teildreieck: <br> | |||
sinα = <math>\tfrac{h_c}{b}</math> |·b<br> | |||
b·sinα = h<sub>c</sub> <br> | |||
</div> | |||
<div class="width-1-2"> | |||
rechtes Teildreieck: <br> | |||
sinβ = <math>\tfrac{h_c}{a}</math> |·b<br> | |||
a·sinβ = h<sub>c</sub> <br> | |||
</div> | |||
</div> | |||
Also gilt:<br> | |||
a·sinβ = b·sinα | : sinα; : sinβ<br> | |||
<math>\tfrac{a}{sin\alpha} = \tfrac{b}{sin\beta}</math><br> | |||
Ebenso kannst du dies für h<sub>a</sub> und h<sub>b</sub> herleiten und erhältst den Sinussatz:<br> | |||
<math>\tfrac{a}{sin\alpha} = \tfrac{b}{sin\beta} = \tfrac{c}{sin\gamma}</math> | |||
{{Box|1=Sinussatz (für allgemeine Dreiecke)|2=[[Datei:Allgemeines Dreieck (farbig).png|rechts|rahmenlos]]In jedem Dreieck verhalten sich die Seiten wie die Sinuswerte ihrer gegenüberliegenden Winkel:<br> | |||
<big><math>\tfrac{a}{sin\alpha} = \tfrac{b}{sin\beta} = \tfrac{c}{sin\gamma}</math></big>|3=Merksatz}} | |||
{{#ev:youtube|O2ZY6htEY4k|800|center}} | |||
{{Box|Übung 7|Löse mithilfe des Sinussatzes im Buch | |||
* S. 114, Nr. 25|Üben}} | |||
===3.7 Erweiterung: Kosinussatz=== | |||
In allgemeinen Dreiecken gilt der Kosinussatz. Kannst du ihn herleiten? Das nachfolgende Applet zeigt dies Schritt für Schritt:<br> | |||
Originallink https://www.geogebra.org/m/zyafbyhq <br> | |||
<ggb_applet id="zyafbyhq" width="1026" height="787" border="888888" /> | |||
{{Box|1=Kosinussatz (für allgemeine Dreiecke)|2=[[Datei:Allgemeines Dreieck (farbig).png|rechts|rahmenlos]]In jedem Dreieck ABC gilt:<br> | |||
* a² = b² + c² - 2bc·cosα | |||
* b² = a² + c² - 2ac·cosβ | |||
* c² = a² + b² - 2ab·cosγ|3=Merksatz}} | |||
{{Box|1=Kosinussatz: Übungsaufgabe|2=[[Datei:Kosinussatz Aufgabe.png|rechts|rahmenlos]]In einem Dreieck sind die Längen der Seite a = 4cm und b = 6cm und der Winkel γ = 58° gegeben. Berechne die Länge der Seite c.|3=Üben}} | |||
{{Lösung versteckt|1=Setze die gegebenen Größen in den Kosinussatz ein:<br> | |||
c² = a² + b² - 2ab·cosγ<br> | |||
c² = 4² + 6² - 2·4·6·cos(58°)<br> | |||
c² ≈ 26,56 |:<math>\surd</math><br> | |||
c ≈ 5,15(cm)|2=Lösung anzeigen|3=Verbergen}} | |||
<br> | |||
{{Fortsetzung|weiter=4 Berechnungen in beliebigen Figuren|weiterlink=Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in beliebigen Figuren}} | {{Fortsetzung|weiter=4 Berechnungen in beliebigen Figuren|weiterlink=Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in beliebigen Figuren}} |
Aktuelle Version vom 3. April 2024, 10:26 Uhr
1) Sinus, Kosinus, Tangens
2) Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken
3) Berechnungen in allgemeinen Dreiecken
4) Berechnungen in beliebigen Figuren
3 Strecken- und Winkelberechnungen in allgemeinen Dreiecken
Die Seitenverhältnisse Sinus, Kosinus und Tanges gelten nur für rechtwinklige Dreiecke.
Um in allgemeinen Dreiecken Strecken und Winkel berechnen zu können, zerlege das Dreieck mithilfe einer Höhe in zwei rechtwinklige Dreiecke.
3.1 Beispiel 1: Eine Seite und zwei Winkel sind gegeben
1. Möglichkeit: Zerlege das Dreieck durch die Höhe ha ein zwei rechtwinklige Dreiecke.
① Bestimme γ:
Winkelsummensatz
γ = 180° - α - β
= 180° - 42° - 62°
= 76°
② Berechne ha:
sin β = | ·c
c · sin β = ha
8,5 · sin(42°) = ha
5,7 (cm) ≈ ha
③ Berechne b:
sin γ = | ·b
b · sin γ = ha | : sin γ
b =
b =
b ≈ 5,9 (cm)
Berechne a:
④ Berechne a1:
cos β = | ·c
c · cos β = a1
8,5 · cos (42°) = a1
6,3 (cm) a1
⑤ Berechne a2:
cos γ = | ·b
b · cos γ = a2
5,9 · cos (76°) = a2
1,4 (cm) a2
⑥ Berechne a:
a = a1 + a2
= 6,3 + 1,4
= 7,7 (cm)
2. Möglichkeit: Zerlege das Dreieck durch die Höhe hb ein zwei rechtwinklige Dreiecke.
① Bestimme γ:
Winkelsummensatz
γ = 180° - α - β
= 180° - 42° - 62°
= 76°
② Berechne hb:
sin α = | ·c
c · sin α = hb
8,5 · sin(62°) = hb
7,5 (cm) hb
③ Berechne a:
sin γ = | ·a
a · sin γ = hb | : sin γ
a =
a =
a 7,7 (cm)
Berechne b:
④ Berechne b1:
cos α = | ·c
c · cos α = b1
8,5 · cos (62°) = b1
4,0 (cm) b1
⑤ Berechne b2:
cos γ = | ·a
a · cos γ = b2
7,7 · cos (76°) = b2
1,9 (cm) b2
⑥ Berechne b:
b = b1 + b2
= 4,0 + 1,9
= 5,9 (cm)
3.2 Beispiel 2: Zwei Seiten und der eingeschlossene Winkel sind gegeben
1. Möglichkeit: Zerlege das Dreieck durch die Höhe ha ein zwei rechtwinklige Dreiecke.
① Bestimme ha:
sin γ = |·b
b · sin γ = ha
5,8 · sin(65°) = ha
5,3 (cm) ha
② Bestimme a2
cos γ = |·b
b · cos γ = a2
5,8 · cos(65°) = a2
2,5 (cm) a2
③ Bestimme a1
a – a2= a1
8,2 - 2,5 = a1
5,7 (cm) = a1
④ Bestimme β
tan β =
tan β = |tan-1
β 42,4°
⑤ Bestimme c
sin β = |·c
c · sin β = ha |: sin β
c =
c =
c 7,7 (cm)
ODER:
c² = |
c=
c =
c 7,7 (cm)
⑥ Bestimme den letzten Winkel α
Winkelsumme
α + β + γ = 180° |- β; -γ
α = 180° - β - γ
α = 180° - 42,4° - 65°
α = 72,6°
2. Möglichkeit: Zerlege das Dreieck durch die Höhe hb ein zwei rechtwinklige Dreiecke.
① Bestimme hb:
sin γ = |·a
a · sin γ = hb
8,2 · sin(65°) = hb
7,4 (cm) hb
② Bestimme b2
cos γ = |·a
a · cos γ = b2
8,2 · cos(65°) = b2
3,5 (cm) b2
③ Bestimme b1
b – b2= b1
5,8 - 3,5 = b1
2,3 (cm) = b1
④ Bestimme α
tan α =
tan α = |tan-1
α 72,7°
⑤ Bestimme c
sin α = |·c
c · sin α = hb |: sin α
c =
c =
c 7,8 (cm)
ODER:
c² = |
c=
c =
c 7,7 (cm)
⑥ Bestimme den letzten Winkel β
Winkelsumme
α + β + γ = 180° |- α; -γ
β = 180° - α - γ
β= 180° - 72,7° - 65°
Du merkst, es kommt zu Rundungsungenauigkeiten.
3.3 Beispiel 3: Zwei Seiten und ein anliegender Winkel sind gegeben
Erkläre, warum es hier nur eine Möglichkeit gibt, das Dreieck zu zerlegen: die Höhe hc .
① Bestimme hc:
sin α = |·b
b · sin α = hc
10,5 · sin(37°) = hc
6,3 (cm) hc
② Bestimme c1
cos α = |·b
b · cos α = c1
10,5 · cos(37°) = c1
8,4 (cm) c1
③ Bestimme c2
= a² |-
= a² - |
c2=
c2 =
c2 3,1 (cm)
④ Bestimme c:
c = c1 + c2
= 8,4 + 3,1
⑤ Bestimme β
sin β =
sin β = |sin-1
β 64,2°
Winkelsumme
α + β + γ = 180° |- α; -β
γ = 180° - β - α
γ= 180° - 37° - 64,2°
γ = 78,8°
Das Video fasst das Vorgehen noch einmal zusammen:
3.4 Anwendungsaufgaben
Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann den fehlenden Winkel, die Länge der entsprechenden Höhe und die Längen der Seiten a und b.
oder
Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann schrittweise die fehlenden Größen.
oder
Erstelle eine Skizze zur Aufgabe und beschrifte sie vollständig.
Zerlege das Dreieck durch eine Höhe in zwei rechtwinklige Teildreiecke.
oder
Die Dachfläche besteht aus 4 Dreiecksflächen. Bestimme also die Fläche eines Dreiecks und multipliziere diesen Flächeninhalt mit 4. Die Skizze hilft dir bei der Bestimmung der nötigen Größen. (ADreieck= )
Betrachte das linke Dreieck ABL. Zerlege es in rechtwinklige Teildreiecke (ohne die gegebene Seite c zu teilen). Die Skizze hilft dir für deinen Lösungsplan.
Bestimme ha, δ1, a1, a2, a.
Betrachte zur Lösung das linke Dreieck BCL. Gegeben ist nun auch aus Teil a) die Länge der Strecke a = 3,63 sm. Berechne den Nebenwinkel β2 von β und den Winkel δ2 mihilfe der Winkelsumme. Zerlege auch dieses Dreieck wieder in zwei rechtwinklige Teildreiecke. Die Skizze hilft dir, die nötigen Rechenschritte zu planen.
Zwischentest 4: Anwendung in einem beliebigen Dreieck
3.5 Erweiterung: Formel für den Flächeninhalt beliebiger Dreiecke (mit Sinus)
Herleitung:
linkes Teildreieck:
sinα = |·b
b·sinα = hc
Flächeninhaltsformel:
A = | setze für hc = b·sinα ein
=
= b·c·sinα
3.6 Erweiterung: Sinussatz
In allgemeinen Dreiecken gilt der Sinussatz. Kannst du ihn herleiten? Das nachfolgende Applet zeigt dies Schritt für Schritt:
Originallink https://www.geogebra.org/m/ynfadptm
Applet von Buß-Haskert
linkes Teildreieck:
sinα = |·b
b·sinα = hc
rechtes Teildreieck:
sinβ = |·b
a·sinβ = hc
Also gilt:
a·sinβ = b·sinα | : sinα; : sinβ
Ebenso kannst du dies für ha und hb herleiten und erhältst den Sinussatz:
3.7 Erweiterung: Kosinussatz
In allgemeinen Dreiecken gilt der Kosinussatz. Kannst du ihn herleiten? Das nachfolgende Applet zeigt dies Schritt für Schritt:
Originallink https://www.geogebra.org/m/zyafbyhq
Setze die gegebenen Größen in den Kosinussatz ein:
c² = a² + b² - 2ab·cosγ
c² = 4² + 6² - 2·4·6·cos(58°)
c² ≈ 26,56 |: