Benutzer:Buss-Haskert/Gleichungen/Gleichungen lösen: Unterschied zwischen den Versionen
K (Weiterlink) Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung |
||
(26 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | {{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | ||
<br> | <br> | ||
Zeile 75: | Zeile 75: | ||
{{Box|1=Übung 5|2=Löse die Übungen auf der Seite realmath. Stelle dir die Situation als Tütengleichung mit dem Waagemodell vor. Bearbeite jeweils so viele Aufgaben, bis du mindestens 300 Punkte gesammelt hast. | {{Box|1=Übung 5|2=Löse die Übungen auf der Seite realmath. Stelle dir die Situation als Tütengleichung mit dem Waagemodell vor. Bearbeite jeweils so viele Aufgaben, bis du mindestens 300 Punkte gesammelt hast. | ||
* [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichungswaage. | * [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichungswaage.php Level 1 Waagemodell] | ||
* [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichunglevel. | * [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichunglevel.php Level 1 Übung 1] | ||
* [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichungerfinden. | * [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichungerfinden.php Level 1 Übung 2] | ||
* [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichungswaage2. | * [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichungswaage2.php Level 2 Waagemodell] | ||
* [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichunglevela1. | * [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichunglevela1.php Level 2 Übung] | ||
* [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichungswaage3. | * [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichungswaage3.php Level 3 Waagemodell] | ||
* [https://www.realmath.de/Neues/Klasse6/gleiloes. | * [https://www.realmath.de/Neues/Klasse6/gleiloes.php Level 3 Übung 1] | ||
* [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichunglevel1. | * [https://www.realmath.de/Neues/Klasse6/gleichungen/gleichunglevel1.php Level 3 Übung 2]|3=Üben}} | ||
{{LearningApp|app=pjews6mnv21|width=100%|height=1500px}} | {{LearningApp|app=pjews6mnv21|width=100%|height=1500px}} | ||
Zeile 110: | Zeile 110: | ||
{{#ev:youtube|G5XxS2OFsJU|800|center}} | {{#ev:youtube|G5XxS2OFsJU|800|center}} | ||
<br> | <br> | ||
{{Box|Übung 8|Löse die Übungen auf | {{Box|Übung 8|Löse die Übungen auf den Seiten realmath und dwu Schritt für Schritt. | ||
* [ | * [https://realmath.de/Neues/Klasse6/gleichungen/gleichung.php Übung 1 (realmath)] | ||
* [https:// | * [https://realmath.de/Neues/Klasse6/gleichungen/gleichungnr2.php Übung 2 (realmath)] | ||
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmgl11.htm Übung 3 (dwu)] | |||
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmgl12.htm Übung 4 (dwu)]|Üben}} | |||
<br> | <br> | ||
{{Box|Übung 9|Löse die Aufgaben aus dem Buch. Notiere die Umformungen in der Kurzschreibweise mit einem Kommandostrich, wie in der vorausgegangenen Übung. Vergleiche deine Lösungen und hake ab. | {{Box|1=Übung 9|2=Löse die Aufgaben aus dem Buch. Notiere die Umformungen in der Kurzschreibweise mit einem Kommandostrich, wie in der vorausgegangenen Übung. Vergleiche deine Lösungen und hake ab. | ||
* S. 118 Nr. 5 | * (S. 118, Nr. 5 = S. 126, Nr. 8) | ||
* S. 126 Nr. 4 | * S. 126, Nr. 4 | ||
* S. 126 Nr. 5 | * S. 126, Nr. 5 | ||
* S. 126 Nr. 8 | * S. 126, Nr. 8 | ||
* S. 126 Nr. 9 | * S. 126, Nr. 9 | ||
* S. 126 Nr. 10|Üben}} | * S. 126, Nr. 10|3=Üben}} | ||
{{Lösung versteckt|1=Schreibweise mit Kommandostrich:<br> | {{Lösung versteckt|1=Schreibweise mit Kommandostrich:<br> | ||
a) z + 18 = 38 |-18<br> | a) z + 18 = 38 |-18<br> | ||
Zeile 146: | Zeile 148: | ||
{{#ev:youtube|K0zma5hxJCM|800|center}} | {{#ev:youtube|K0zma5hxJCM|800|center}} | ||
<br> | <br> | ||
{{Box|Übung 11|Löse die Gleichungen Schritt für Schritt. Notiere jeweils die Umformungen hinter den Kommandostrichen. | {{Box|Übung 11|1=Übung 11: Aufgabenset: Gleichungen mit Variablen auf beiden Seiten lösen|2=Wähle aus den Aufgaben aus. Sammle mindestens 10 Sternchen.<br> | ||
[[Datei:Aufgabenset 3 Gleichungen lösen.png|rahmenlos|333x333px]] | |||
|3=Üben}} | |||
{{Lösung versteckt|1=Vergleiche deine Lösungen<br> | |||
x = 5; x = 4; x = -6; x = 6; x = 9; x = 2 ; x = 3 ; x = 3; x = 5/6; x = 7/4|2=Lösungskontrolle|3=Verbergen}} | |||
{{Box|Übung 12|Löse die Gleichungen Schritt für Schritt. Notiere jeweils die Umformungen hinter den Kommandostrichen. | |||
* S. 119 Nr. 7 (Führe für jede Aufgabe eine Probe durch.) | * S. 119 Nr. 7 (Führe für jede Aufgabe eine Probe durch.) | ||
* S. 126 Nr. 11 (Vergleiche mit den Lösungen hinten im Buch.) | * S. 126 Nr. 11 (Vergleiche mit den Lösungen hinten im Buch.) | ||
* S. 127 Nr. 10|Üben}} | * S. 127 Nr. 10|Üben}} | ||
{{Lösung versteckt|1=Um deine Lösung zu prüfen, | {{Lösung versteckt|1=Um deine Lösung zu prüfen, setze deine Lösung anstelle von x in die Gleichung ein. Rechne dann die linke und die rechte Seite der Gleichung aus (nicht umformen!!). Es muss eine wahre Aussage entstehen.<br> | ||
Beispiel:<br> | Beispiel:<br> | ||
12x - 1 = 7x + 19 |...<br> | 12x - 1 = 7x + 19 |...<br> | ||
Zeile 160: | Zeile 174: | ||
47 = 47 (w)<br>|2=Tipp zur Probe|3=Verbergen}} | 47 = 47 (w)<br>|2=Tipp zur Probe|3=Verbergen}} | ||
{{Box|Übung | {{Box|Übung 13|In der nächsten Übung fasse zunächst auf beiden Seiten so weit wie möglich zusammen. Danach löse Schritt für Schritt. (Übungen von realmath) | ||
* [ | * [https://realmath.de/Neues/Klasse7/gleichungen/gleichung.php Übung 1] | ||
* [https:// | * [https://realmath.de/Neues/Klasse7/gleichungen/gleichung2.php Übung 2] | ||
* S. 119 Nr. 11 | * S. 119 Nr. 11 | ||
* S. 119 Nr. 12|Üben}} | * S. 119 Nr. 12|Üben}} | ||
Zeile 172: | Zeile 186: | ||
{{Fortsetzung|weiter=3) | {{Fortsetzung|weiter=3) Gleichungen mit Klammern|weiterlink=Benutzer:Buss-Haskert/Gleichungen/Gleichungen mit Klammern}} | ||
Aktuelle Version vom 15. März 2024, 20:00 Uhr
1.1) Was ist eine Gleichung
1.2) Gleichungen lösen durch Probieren
2) Gleichungen lösen durch Umformen
3) Gleichungen mit Klammern
2) Gleichungen lösen durch Umformen
Erklärung des Tricks:
Warum? Das kannst du bald erklären...
Du hast im letzten Kapitel Gleichungen durch Probieren gelöst. In diesem Kapitel lernst du Möglichkeiten kennen, die Gleichung durch Umformungen zu lösen. Wiederhole dazu die Vorstellungen zu Gleichungen anhand von Waagen im Gleichgewicht in der nachfolgenden LearningApp.
App von G. Plaschke
2.1 Tütengleichungen - Waagemodell
Hilfe zum Finden von schwierigen Gleichungen:
Gehe rückwärts vor: Die Lösung soll z.B. x = 2 sein, also sollen in einer Tüte 2 Steine liegen. Die Gleichung lautet also
x = 2
Nun ergänze auf beiden Seiten immer das Gleiche, bis eine schwierige Gleichung entstanden ist, z.B.
auf beiden Seite zwei Steine ergänzen
x+2 = 4
auf beiden Seiten ein x oder eine Tüte ergänzen
2x + 2 = x + 4
auf beiden Seiten noch eine Tüte ergänzen
3x + 2 = 2x + 4
Diese Umformungen heißen "Äquivalenzumformungen" (von lat. äqui - gleich und vale - wert sein).
2.2 Gleichungen mit Variablen auf einer Seite lösen
Klicke auf das Bild, dann siehst du, wie du die Mengenklammer für die Lösung schreibst. Übe so lange, bis du diese Klammer ebenso schreiben kannst.
Schreibweise mit Kommandostrich:
a) z + 18 = 38 |-18
z = 20
2.3 Gleichungen mit Variablen auf beiden Seiten lösen
Sicherlich kennst du noch die Vorrangregeln beim Berechnen von Termen:
- Punktrechnung vor
- Strichrechnung
Möchtest du nun eine Gleichung nach x auflösen, ist das Ziel, dass x "allein auf einer Seite" der Gleichung steht. Du musst also "alles, was stört auf die andere Seite bringen".
Bei den Umformungen musst du diese Reihenfolge "rückwärts" beachten:
Bringe zunächst die Terme mit Strichrechnung auf die andere Seite, dann löse die Punktrechnung auf.
Vergleiche deine Lösungen
Um deine Lösung zu prüfen, setze deine Lösung anstelle von x in die Gleichung ein. Rechne dann die linke und die rechte Seite der Gleichung aus (nicht umformen!!). Es muss eine wahre Aussage entstehen.
Beispiel:
12x - 1 = 7x + 19 |...
...
Die Lösung für Nr. 7a) ist x = 4.
Probe:
12·4 - 1 = 7·4 + 19
48 - 1 = 28 + 19
Lösungen (unsortiert):
Noch mehr Übungen (mit Lösungen) findest du hier:
Mathe-Trainer: Lineare Gleichungen
- ↑ Die Bildausschnitte stammen von der Simulation zu Gleichungen auf der Seite von PhET https://phet.colorado.edu/sims/html/equality-explorer/latest/equality-explorer_de.html