Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(54 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
{{Box
{{Box
|1=Info
|1=Info
|2=In diesem Lernpfadkapitel geht es um die Lagebeziehung zwischen einer Gerade und einer Ebene oder zwischen zwei Ebenen inklusive der Berechnung der Schnittwinkel. Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt.
|2=In diesem Lernpfadkapitel geht es um die Lagebeziehung zwischen einer Gerade und einer Ebene oder zwischen zwei Ebenen inklusive der Berechnung der Schnittwinkel. Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen und anschließend euer Wissen in Übungsaufgaben anwenden könnt.  
 
Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.




Zeile 39: Zeile 37:


===Untersuchung der Lagebeziehung zwischen Gerade und Ebene===
===Untersuchung der Lagebeziehung zwischen Gerade und Ebene===
====Ebene in Parameterform====
{{Box|Aufgabe 1: Lückentext zur Lagebeziehung zwischen Gerade und Ebene|
{{Box|Aufgabe 1: Lückentext zur Lagebeziehung zwischen Gerade und Ebene|
{{LearningApp|width=100%|height=500px|app=pfhf979bk21}}
{{LearningApp|width=100%|height=500px|app=pfhf979bk21}}
Zeile 91: Zeile 90:
{{Box | Aufgabe 3: Schnittpunktberechnung |
{{Box | Aufgabe 3: Schnittpunktberechnung |
Gegeben sind eine Gerade <math> g: \vec{x}= \left( \begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) </math>und eine Ebene <math>E: \vec{x}= \left( \begin{matrix} 4\\ 1\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 3\\ {-}2 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) </math>.  
Gegeben sind eine Gerade <math> g: \vec{x}= \left( \begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) </math>und eine Ebene <math>E: \vec{x}= \left( \begin{matrix} 4\\ 1\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 3\\ {-}2 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) </math>.  
Zeige, dass sich die Gerade und die Ebene schneiden und gib den Schnittpunkt an.


{{Lösung versteckt|1= 1. Setze die Geradengleichung mit der Ebenengleichung gleich.
{{Lösung versteckt|1= 1. Setze die Geradengleichung mit der Ebenengleichung gleich.
Zeile 101: Zeile 102:


5. Berechne den Schnittpunkt, indem du den Wert für <math>t</math> in die Geradengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}}
5. Berechne den Schnittpunkt, indem du den Wert für <math>t</math> in die Geradengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}}
Zeige, dass sich die Gerade und die Ebene schneiden und gib den Schnittpunkt an.


{{Lösung versteckt|1= 1. Setze die Geradengleichung mit der Ebenengleichung gleich: <math> \lef t(\begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) = \left( \begin{matrix} 4\\ 1\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 3\\ {-}2 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) </math>
{{Lösung versteckt|1= 1. Setze die Geradengleichung mit der Ebenengleichung gleich: <math> \left(\begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) = \left( \begin{matrix} 4\\ 1\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 3\\ {-}2 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) </math>


2. Stelle ein LGS auf: <math>\begin{vmatrix} 1+2t=4+r+2s \\ t=1+3r+3s \\ 2-3t=2-2r+s \end{vmatrix} </math>
2. Stelle ein LGS auf: <math>\begin{vmatrix} 1+2t=4+r+2s \\ t=1+3r+3s \\ 2-3t=2-2r+s \end{vmatrix} </math>
Zeile 111: Zeile 111:
   
   


4. Da das LGS genau eine Lösung besitzt, haben die Gerade und die Ebene einen gemeinsamen Punkt. Somit schneiden sie sich.Die Anzahl der Lösungen zeigt dir, wie viele gemeinsamen Punkte die Gerade und die Ebene haben.
4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsame Punkte die Gerade und die Ebene haben. Da das LGS genau eine Lösung besitzt, haben die Gerade und die Ebene einen gemeinsamen Punkt. Somit schneiden sie sich.


5. Berechne den Schnittpunkt, indem du den Wert für <math>t</math> in die Geradengleichung einsetzt:<math> \left(\begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + 1 \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) = \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}}
5. Berechne den Schnittpunkt, indem du den Wert für <math>t</math> in die Geradengleichung einsetzt:<math> \left(\begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + 1 \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) = \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}}
Zeile 117: Zeile 117:
|Arbeitsmethode | Farbe={{Farbe|orange}}}}
|Arbeitsmethode | Farbe={{Farbe|orange}}}}


{{Box | Aufgabe 3: Schatten eines Sonnensegels |  
{{Box | Aufgabe 4: Schatten eines Sonnensegels |  
Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math>A (9|{-}5|7), B (6|{-}5|7)</math> und <math>C (7|{-}10|11)</math>. Die Terrasse wird modelliert durch die Ebene <math>E: \vec{x}= \left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right) </math>. Die Richtung der Sonnenstrahlen entspricht dem Vektor <math>\vec{s} = \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>. In welchem Bereich hat Frau Meier nun Schatten?
Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math>A (9|{-}5|7), B (6|{-}5|7)</math> und <math>C (7|{-}10|11)</math>. Die Terrasse wird modelliert durch die Ebene <math>E: \vec{x}= \left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right) </math>. Die Richtung der Sonnenstrahlen entspricht dem Vektor <math>\vec{s} = \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>. In welchem Bereich hat Frau Meier nun Schatten?


Zeile 125: Zeile 125:


{{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Hier siehst du eine Skizze, die die oben beschriebene Situation abbildet. Überlege dir, welche Punkte du für die Aufgabe bestimmen musst. [[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Hier siehst du eine Skizze, die die oben beschriebene Situation abbildet. Überlege dir, welche Punkte du für die Aufgabe bestimmen musst.  
 
[[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Nachdem ihr die Geraden- und Ebenengleichung gleichgesetzt habt, reicht es, wenn ihr euch die Gleichung für die <math>x_3</math>-Koordinate anschaut.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1= Nachdem ihr die Geraden- und Ebenengleichung gleichgesetzt habt, reicht es, wenn ihr euch die Gleichung für die <math>x_3</math>-Koordinate anschaut.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
'''1. Schritt:''' Mache eine Skizze von der Situation.
'''1. Schritt:''' Mache eine Skizze von der Situation.
[[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]
[[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]
'''2. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f\colon \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>,
'''2. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f\colon \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>,
<math>g\colon \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>,
<math>g\colon \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>,
Zeile 139: Zeile 142:


Setze die Geraden- und Ebenengleichung gleich:
Setze die Geraden- und Ebenengleichung gleich:
<math>\left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  
<math>\left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  


Notiere die Zeilen der Gleichung als Gleichungssystem:
Notiere die Zeilen der Gleichung als Gleichungssystem:
Zeile 152: Zeile 155:


Setze die Geraden- und Ebenengleichung gleich:
Setze die Geraden- und Ebenengleichung gleich:
<math>\left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  
<math>\left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  


Notiere die Zeilen der Gleichung als Gleichungssystem:
Notiere die Zeilen der Gleichung als Gleichungssystem:
Zeile 179: Zeile 182:
|Arbeitsmethode}}
|Arbeitsmethode}}


{{Box|&#x2B50;Merke: Die Lagebeziehung einer Gerade und einer Ebene mit dem Normalenvektor untersuchen|  
====&#x2B50;Ebene in Koordinatenform====
Bei der Bestimmung der Lagebeziehung zwischen einer Gerade <math>g</math> und einer Ebene <math>E</math> kann dir der Normalenvektor der Ebene helfen.
{{Box|&#x2B50;Merke: Die Lagebeziehung einer Gerade und einer Ebene mit dem Normalenvektor untersuchen|Bei der Bestimmung der Lagebeziehung zwischen einer Gerade <math>g</math> und einer Ebene <math>E</math> kann dir der Normalenvektor der Ebene helfen.
Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in das Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum|Ebenen im Raum]].
{{3Spalten
{{3Spalten
|
|
Zeile 205: Zeile 209:




{{Box |&#x2B50; Aufgabe : Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform |  
{{Box |&#x2B50; Aufgabe 5: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform |  


a) Gegeben sind eine Ebene <math>E\colon 2x_1 + x_2 - x_3 = 5 </math> und eine Gerade <math>g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene.
a) Gegeben sind eine Ebene <math>E\colon 2x_1 + x_2 - x_3 = 5 </math> und eine Gerade <math>g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene.
Zeile 214: Zeile 218:


{{Lösung versteckt|1=Verwende des Skalarprodukt.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Verwende des Skalarprodukt.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Wenn das Skalarprodukt zweier Vektoren <math>0</math> ergibt, dann sind die beiden Vektoren orthogonal zueiander. Wenn das Skalarprodukt ungleich <math>0</math> ist, dann sind sie nicht orthogonal.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=Wenn das Skalarprodukt zweier Vektoren <math>0</math> ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich <math>0</math> ist, dann sind sie nicht orthogonal.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=<math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 2\\ 1\\ {-}1 \end{matrix} \right) \ast \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) = 2 \cdot (-3) + 1 \cdot 5 -1 \cdot (-1) = 0</math>. Da das Skalarprodukt <math> 0 </math> ergibt, gilt <math>\vec{n} \perp \vec{u}</math>.|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=<math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 2\\ 1\\ {-}1 \end{matrix} \right) \ast \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) = 2 \cdot (-3) + 1 \cdot 5 -1 \cdot (-1) = 0</math>. Da das Skalarprodukt <math> 0 </math> ergibt, gilt <math>\vec{n} \perp \vec{u}</math>.|2=Lösung anzeigen|3=Lösung verbergen}}


Zeile 223: Zeile 227:
{{Lösung versteckt|1=<math>2 \cdot 3 -2 =4 \neq 5</math>
{{Lösung versteckt|1=<math>2 \cdot 3 -2 =4 \neq 5</math>


<math>\Rightarrow</math> Der Aufpunkt liegt nicht in der Ebene. Daher verlaufen die Gerade <math>g </math> und die Ebene <math>E</math> parallel zueinander.|2=Tipp anzeigen|3=Tipp verbergen}}
<math>\Rightarrow</math> Der Aufpunkt liegt nicht in der Ebene. Daher verlaufen die Gerade <math>g </math> und die Ebene <math>E</math> parallel zueinander.|2=Lösung anzeigen|3=Lösung verbergen}}




Zeile 231: Zeile 235:


{{Lösung versteckt|1=Verwende des Skalarprodukt.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Verwende des Skalarprodukt.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Wenn das Skalarprodukt zweier Vektoren <math>0</math> ergibt, dann sind die beiden Vektoren orthogonal zueiander. Wenn das Skalarprodukt ungleich <math>0</math> ist, dann sind sie nicht orthogonal.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=Wenn das Skalarprodukt zweier Vektoren <math>0</math> ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich <math>0</math> ist, dann sind sie nicht orthogonal.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=<math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) \ast \left( \begin{matrix} 4\\ {-}7\\ 5 \end{matrix} \right) = 1 \cdot 4 + 2 \cdot (-7) +3 \cdot 5 = 0</math>. Da das Skalarprodukt <math> 0 </math> ergibt, gilt <math>\vec{n} \perp \vec{u}</math>.|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=<math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) \ast \left( \begin{matrix} 4\\ {-}7\\ 5 \end{matrix} \right) = 1 \cdot 4 + 2 \cdot (-7) +3 \cdot 5 = 0</math>. Da das Skalarprodukt <math> 0 </math> ergibt, gilt <math>\vec{n} \perp \vec{u}</math>.|2=Lösung anzeigen|3=Lösung verbergen}}


Zeile 247: Zeile 251:


{{Lösung versteckt|1=Verwende des Skalarprodukt.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Verwende des Skalarprodukt.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Wenn das Skalarprodukt zweier Vektoren <math>0</math> ergibt, dann sind die beiden Vektoren orthogonal zueiander. Wenn das Skalarprodukt ungleich <math>0</math> ist, dann sind sie nicht orthogonal.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=Wenn das Skalarprodukt zweier Vektoren <math>0</math> ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich <math>0</math> ist, dann sind sie nicht orthogonal.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=<math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) \ast \left( \begin{matrix} -2\\\frac{3}{2} \\1 \end{matrix} \right) = 1\cdot -2-2 \cdot \frac{3}{2} + 1 \cdot 1= -4</math>. Da das Skalarprodukt <math> -4 \neq 0 </math> ergibt, gilt <math>\vec{n}</math> und <math> \vec{u}</math> sind nicht orthogonal zueinander. Somit schneiden sich die Gerade und die Ebene.|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=<math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) \ast \left( \begin{matrix} -2\\\frac{3}{2} \\1 \end{matrix} \right) = 1\cdot -2-2 \cdot \frac{3}{2} + 1 \cdot 1= -4</math>. Da das Skalarprodukt <math> -4 \neq 0 </math> ergibt, sind <math>\vec{n}</math> und <math> \vec{u}</math> nicht orthogonal zueinander. Somit schneiden sich die Gerade und die Ebene.|2=Lösung anzeigen|3=Lösung verbergen}}




'''2. Schritt:''' Berechnung des Schnittpunktes.
'''2. Schritt:''' Berechne des Schnittpunktes.
{{Lösung versteckt|1=Setze die Koordinaten der Gerade <math>g</math> in die Ebenengleichung von <math>E</math> ein und forme nach dem Parameter um.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1=Setze die Koordinaten der Gerade <math>g</math> in die Ebenengleichung von <math>E</math> ein und forme nach dem Parameter um.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= Die einzelnen Koordinaten der Gerade <math>g</math> sind: <math>x_1=4-2r, x_2=3+\frac{3}{2}r, x_3=2+r</math>.  
{{Lösung versteckt|1= Die einzelnen Koordinaten der Gerade <math>g</math> sind: <math>x_1=4-2r, x_2=3+\frac{3}{2}r, x_3=2+r</math>.  
Zeile 269: Zeile 273:
| Arbeitsmethode | Farbe={{Farbe|orange}}}}
| Arbeitsmethode | Farbe={{Farbe|orange}}}}


{{Box|&#x2B50; Aufgabe 4: Bestimme den Parameter |
{{Box|&#x2B50; Aufgabe 6: Bestimme den Parameter |
Gegeben ist eine Ebene <math>E\colon -2x_1 + 3x_2 - x_3 = 3</math>.
Gegeben ist eine Ebene <math>E\colon -2x_1 + 3x_2 - x_3 = 3</math>.
Bestimme <math>l</math> und <math>m</math> in den folgenden Geraden so, dass die jeweils angegebene Lagebeziehung erfüllt ist.
Bestimme <math>l</math> und <math>m</math> in den folgenden Geraden so, dass die jeweils angegebene Lagebeziehung erfüllt ist.
Zeile 282: Zeile 286:


{{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Wenn die Gerade <math>g</math> in der Ebene <math>E</math> liegt, liegt jeder Punkt auf der Gerade <math>g</math> auch in der Ebene <math>E</math>. Prüfe mit der Punktprobe, ob der Aufpunkt von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Wenn die Gerade <math>g</math> in der Ebene <math>E</math> liegt, liegt jeder Punkt auf der Gerade <math>g</math> auch in der Ebene <math>E</math>. |2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Prüfe mit der Punktprobe, ob der Aufpunkt von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1= Prüfe mit der Punktprobe, ob der Aufpunkt von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1= '''Finde zuerst m:''' <math> \vec{u} \ast \vec{n} = \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 3m - \frac{48}{5}</math>.  
{{Lösung versteckt|1= '''Finde zuerst m:''' <math> \vec{u} \ast \vec{n} = \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 3m - \frac{48}{5}</math>.  
Zeile 297: Zeile 301:
|Arbeitsmethode}}
|Arbeitsmethode}}


{{Box|&#x2B50; Aufgabe 5: Beamer |  
{{Box|&#x2B50; Aufgabe 7: Flugzeug |  
Ein Flugzeug startet am Flughafen Münster-Osnabrück. Seine Flugbahn in den ersten 6 Minuten nach dem Start wird durch die Gerade <math>j\colon \vec{x} = \left( \begin{matrix} 10\\ 23 \\0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}5\\ \frac{1}{2} \end{matrix} \right)</math> beschrieben, wobei <math> t</math> die Zeit in Minuten nach dem Start bezeichnet. Die Ebene <math> E: 2x_1+x_2=-2 </math> beschreibt eine Nebelwand.
Ein Flugzeug fliegt auf eine Nebelwand zu. Seine Flugbahn wird durch die Gerade <math>j\colon \vec{x} = \left( \begin{matrix} 10\\ 23 \\ 10 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}5\\ 0 \end{matrix} \right)</math> beschrieben, wobei <math> t</math> die Zeit in Minuten nach dem Start bezeichnet. Das Flugzeug befindet sich also im Moment am Punkt <math> P(10/23/10) </math>. Du kannst davon ausgehen, dass es mit konstanter Geschwindigkeit fliegt. Die Ebene <math> E: 2x_1+x_2=-2 </math> beschreibt die Nebelwand.


Versuche die folgenden Aufgaben ohne Taschenrechner zu lösen.
Versuche die folgenden Aufgaben ohne Taschenrechner zu lösen.
Zeile 304: Zeile 308:
a) Begründe, dass das Flugzeug die Nebelwand trifft.
a) Begründe, dass das Flugzeug die Nebelwand trifft.
{{Lösung versteckt|1=Verwende das Skalarprodukt. |2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1=Verwende das Skalarprodukt. |2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= <math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right) \ast \left( \begin{matrix} -2\\ {-}5\\\frac{1}{2} \end{matrix} \right) = 2 \cdot -2 + 1 \cdot (-5) +0 \cdot \frac{1}{2} = -7</math>. Da das Skalarprodukt <math> -7 \neq 0 </math> ergibt, sind der Normalenvektor der Ebene <math>E</math> und der Richtungsvektor der Gerade <math>j</math> nicht orthogonal zueinander. Daraus können wir schließen, dass sich Gerade und Ebene schneiden. Das Flugzeug trifft also auf die Nebelwand.|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1= <math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right) \ast \left( \begin{matrix} -2\\ {-}5\\ 0 \end{matrix} \right) = 2 \cdot (-2) + 1 \cdot (-5) +0 \cdot 0 = -9</math>. Da das Skalarprodukt <math> -9 \neq 0 </math> ergibt, sind der Normalenvektor der Ebene <math>E</math> und der Richtungsvektor der Gerade <math>j</math> nicht orthogonal zueinander. Daraus können wir schließen, dass sich Gerade und Ebene schneiden. Das Flugzeug trifft also auf die Nebelwand.|2=Lösung anzeigen|3=Lösung verbergen}}


b) Wo trifft das Flugzeug auf die Nebelwand und wie viele Minuten sind seit dem Start vergangen?
b) Wo trifft das Flugzeug auf die Nebelwand und wie viele Minuten dauert es noch, bis das Flugzeug die Nebelwand erreicht?


{{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= Setze die einzelnen Koordinaten der Gerade in die Ebenengleichung ein und löse nach dem Parameter <math>t</math> auf: <math>2 \cdot (10-2t)+23-5t= -2 \Leftrightarrow 20-4t+23-5t =-2 \Leftrightarrow -9t=-45\Leftrightarrow t=5</math>
{{Lösung versteckt|1= Setze die einzelnen Koordinaten der Gerade in die Ebenengleichung ein und löse nach dem Parameter <math>t</math> auf: <math>2 \cdot (10-2t)+23-5t= -2 \Leftrightarrow 20-4t+23-5t =-2 \Leftrightarrow -9t=-45\Leftrightarrow t=5</math>


Da <math>t</math> die Zeit in Minuten nach dem Start angibt, erreicht das Flugzeug den Schnittpunkt 5 Minuten nach dem Start.
Da <math>t</math> die Zeit in Minuten angibt, erreicht das Flugzeug den Schnittpunkt in 5 Minuten.


Berechne nun den Schnittpunkt S, indem du <math>t</math> in die Geradengleichung einsetzt. Du erhältst den Ortsvektor zum Schnittpunkt und kannst den Schnittpunkt dann ablesen: <math>\left( \begin{matrix} 10\\ 23 \\0 \end{matrix} \right) + 5 \cdot \left( \begin{matrix} -2\\ {-}5\\ \frac{1}{2} \end{matrix} \right)</math><math> = \left( \begin{matrix} 0\\{-}2\\ \frac{5}{2} \end{matrix}=\left( \begin{matrix} 0\\-2\\ 2{,}5 \end{matrix} \right)</math>. Damit ergibt sich der Schnittpunkt <math> S(0|-2|2{,}5)</math>.
Berechne nun den Schnittpunkt <math>S</math>, indem du <math>t</math> in die Geradengleichung einsetzt. Du erhältst den Ortsvektor zum Schnittpunkt und kannst den Schnittpunkt dann ablesen: <math>\left( \begin{matrix} 10\\ 23 \\10 \end{matrix} \right) + 5 \cdot \left( \begin{matrix} -2\\ {-}5\\ 0 \end{matrix} \right)</math><math> = \left( \begin{matrix} 0\\{-}2\\ 10 \end{matrix}\right)=\left( \begin{matrix} 0\\-2\\ 10 \end{matrix} \right)</math>. Damit ergibt sich der Schnittpunkt <math> S(0|-2|10)</math>.


Das Flugzeug trifft die Nebelwand 5 Minuten nach dem Start im Punkt <math> S(0|-2|2{,}5)</math>. |2=Lösung anzeigen|3=Lösung verbergen}}
Das Flugzeug trifft die Nebelwand in 5 Minuten im Punkt <math> S(0|-2|10)</math>. |2=Lösung anzeigen|3=Lösung verbergen}}
  | Arbeitsmethode | Farbe={{Farbe|orange}}}}  
  | Arbeitsmethode | Farbe={{Farbe|orange}}}}  


Zeile 323: Zeile 327:
{{Box | &#x2B50; Merke: Berechnung des Winkels zwischen Gerade und Ebene |  
{{Box | &#x2B50; Merke: Berechnung des Winkels zwischen Gerade und Ebene |  


Wenn eine Gerade <math>g</math> eine Ebene <math>E</math> schneidet, kannst du nicht nur den Schnittpunkt berechnen, sondern auch den Schnittwinkel. Dafür benötigen wir den Normalenvektor. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in das Kapitel ''Ebenen im Raum'' ([[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]]). | Merksatz}}  
Wenn eine Gerade <math>g</math> eine Ebene <math>E</math> schneidet, kannst du nicht nur den Schnittpunkt berechnen, sondern auch den Schnittwinkel. Dafür benötigen wir den Normalenvektor. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in das Kapitel ''Ebenen im Raum'' ([[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum|Ebenen im Raum]]). | Merksatz}}  


{{Box | &#x2B50; Merksatz: Winkel berechnen zwischen Gerade und Ebene |
{{Box | &#x2B50; Merksatz: Winkel berechnen zwischen Gerade und Ebene |
Zeile 345: Zeile 349:
  | Merksatz}}  
  | Merksatz}}  


{{Box | Aufgabe &#x2B50;: Berechnung des Winkels zwischen Gerade und Ebene |  
{{Box | &#x2B50; Aufgabe 8: Berechnung des Winkels zwischen Gerade und Ebene |  


Gegeben sind die Gerade <math>g\colon \vec{x}=\left( \begin{matrix} {-}1\\ 3\\ 6 \end{matrix} \right) + r \cdot \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und die Ebene <math>E\colon 2x_1 + x_2 + 4 x_3 = {-}27</math>. Bestimme den Winkel, unter dem sich die Gerade <math>g</math> und die Ebene <math>E</math> schneiden.
Gegeben sind die Gerade <math>g\colon \vec{x}=\left( \begin{matrix} {-}1\\ 3\\ 6 \end{matrix} \right) + r \cdot \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und die Ebene <math>E\colon 2x_1 + x_2 + 4 x_3 = {-}27</math>. Bestimme den Winkel, unter dem sich die Gerade <math>g</math> und die Ebene <math>E</math> schneiden.


{{Lösung versteckt|1= Nutze zur Berechnung des Winkels die Formel aus dem Merksatz. Notiere dafür den Richtungsvektor der Gerade und den Normalenvektor der Ebene.
Wenn du beide in die Formel eingesetzt hast, benötigst du den <math>\sin^{-1}</math>, um den Winkel ausrechnen zu können.
|2=Tipp anzeigen|3=Tipp verbergen}}


{{Lösung versteckt|1= '''1. Schritt''': Notiere den Richtungvektor <math>\vec{u}</math> der Gerade und den Normalenvektor <math>\vec{n}</math> der Ebene.
{{Lösung versteckt|1= '''1. Schritt''': Notiere den Richtungvektor <math>\vec{u}</math> der Gerade und den Normalenvektor <math>\vec{n}</math> der Ebene.
Zeile 359: Zeile 368:
'''3. Schritt''': Forme die Gleichung um.
'''3. Schritt''': Forme die Gleichung um.


<math>\alpha = \arcsin(\frac{18}{\sqrt{1260}}) \Leftrightarrow \alpha \approx 28{,}45^{\circ}</math>
<math>\alpha = \sin^{-1}(\frac{18}{\sqrt{1260}}) \Leftrightarrow \alpha \approx 28{,}45^{\circ}</math>


Der Schnittwinkel beträgt also <math>28{,}45^{\circ}</math>.
Der Schnittwinkel beträgt also <math>28{,}45^{\circ}</math>.
Zeile 367: Zeile 376:
| Arbeitsmethode | Farbe={{Farbe|orange}} }}
| Arbeitsmethode | Farbe={{Farbe|orange}} }}


{{Box | Aufgabe 6&#x2B50;: Trinkpäckchen |  
{{Box | &#x2B50; Aufgabe 9: Trinkpäckchen |  


[[Datei:Trinkpäckchen einfach.jpg|mini|Trinkpäckchen]]
[[Datei:Trinkpäckchen einfach.jpg|mini|Trinkpäckchen]]


Eine Schulklasse nimmt auf ihrem Wandertag Trinkpäckchen mit. Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene <math>F\colon x_1=5</math> beschrieben werden.
Eine Schulklasse nimmt auf ihrem Wandertag Trinkpäckchen mit. Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene <math>E\colon x_1=5</math> beschrieben werden.
Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die Ecken kommen. Sie wollen den Winkel berechnen, unter dem sie den Strohhalm in das Trinkpäckchen stecken müssen, um an den Saft in der gegenüberliegenden Ecke zu kommen.
Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die Ecken kommen. Sie wollen den Winkel berechnen, unter dem sie den Strohhalm in das Trinkpäckchen stecken müssen, um an den Saft in der gegenüberliegenden Ecke zu kommen.


Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der gegenüber liegenden Ecke anstößt, kann er durch die Gerade <math>g</math> veranschaulicht werden: <math>g\colon \vec{x} = \begin{pmatrix} 5\\ 2\\ 11 \end{pmatrix} + t \cdot \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>.
Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der gegenüber liegenden Ecke anstößt, kann er durch die Gerade <math>g</math> veranschaulicht werden: <math>g\colon \vec{x} = \begin{pmatrix} 5\\ 2\\ 11 \end{pmatrix} + t \cdot \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>.


Kannst du den Kindern helfen, den Winkel zu berechnen?
Kannst du den Kindern helfen, den Winkel zu berechnen, unter dem der Strohhalm in das Trinkpäckchen gesteckt werden muss, um die gegenüberliegende Ecke zu erreichen?
   
   
{{Lösung versteckt|1= Vielleicht hilft dir die Skizze.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= Überlege, wie dir der obige Merksatz helfen kann.|2=Tipp anzeigen|3=Tipp verbergen}}


{{Lösung versteckt|1= Gesucht wird der Winkel zwischen der Gerade <math>g</math> und der Ebene <math>F</math>. Der Richtungsvektor der Gerade ist <math>\vec{u} = \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>. Der Normalenvektor der Ebene kann abgelesen werden: <math>\vec{n} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}</math>.
{{Lösung versteckt|1= Gesucht wird der Winkel zwischen der Gerade <math>g</math> und der Ebene <math>E</math>. Der Richtungsvektor der Gerade ist <math>\vec{u} = \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>. Der Normalenvektor der Ebene kann abgelesen werden: <math>\vec{n} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}</math>.


Einsetzen der Vektoren in die Formel liefert:  
Einsetzen der Vektoren in die Formel liefert:  
Zeile 388: Zeile 397:
Mithilfe des Taschenrechners kann das Ergebnis berechnet werden:
Mithilfe des Taschenrechners kann das Ergebnis berechnet werden:


<math>\alpha = \arcsin(\frac{1}{\sqrt{182}}) \Leftrightarrow \alpha \approx 21{,}75^{\circ}</math>
<math>\alpha = \sin^{-1}(\frac{1}{\sqrt{182}}) \Leftrightarrow \alpha \approx 21{,}75^{\circ}</math>


Die Kinder sollten den Strohhalm also in einem Winkel von ca. <math>21{,}75^{\circ}</math> in das Trinkpäckchen stecken, um an den Saft in der gegenüberliegenden Ecke zu kommen.
Die Kinder sollten den Strohhalm also in einem Winkel von ca. <math>21{,}75^{\circ}</math> in das Trinkpäckchen stecken, um an den Saft in der gegenüberliegenden Ecke zu kommen.
Zeile 397: Zeile 406:
   
   


{{Box | Aufgabe 7&#x2B50;: Gerade gesucht |
{{Box | &#x2B50; Aufgabe 10: Gerade gesucht |


Bisher wurde mit der Formel zur Winkelberechnung nur der Winkel berechnet. Die Formel kann jedoch auch genutzt werden, um bei einem vorgegebenen Winkel die Lage der Gerade oder Ebene zu bestimmen.
Bisher wurde mit der Formel zur Winkelberechnung nur der Winkel berechnet. Die Formel kann jedoch auch genutzt werden, um bei einem vorgegebenen Winkel die Lage der Gerade oder Ebene zu bestimmen.
Zeile 440: Zeile 449:
|Merksatz}}
|Merksatz}}


{{Box|Aufgabe 8: Lückentext zur Lagebeziehung zwischen Ebene und Ebene|
===Untersuchung der Lagebeziehung von zwei Ebenen===
 
====Beide Ebenengleichungen in Parameterform====
{{Box|Aufgabe 11: Lückentext zur Lagebeziehung zwischen Ebene und Ebene|


{{LearningApp|width=100%|height=500px|app=ptpaywm2521}}
{{LearningApp|width=100%|height=500px|app=ptpaywm2521}}


|Arbeitsmethode| Farbe={{Farbe|orange}}}}
|Arbeitsmethode| Farbe={{Farbe|orange}}}}<br />{{Box|Merke: Lagebeziehung von zwei Ebenen in Parameterform untersuchen. |
 
===Untersuchung der Lagebeziehung von zwei Ebenen===
====Beide Ebenengleichungen in Parameterform====
{{Box|Merke: Lagebeziehung von zwei Ebenen in Parameterform untersuchen. |
[[Datei:Vorgehen bei der Untersuchung der Lagebeziehung zweier Ebenen in Parameterform.jpg|zentriert|rahmenlos|600x600px]]
[[Datei:Vorgehen bei der Untersuchung der Lagebeziehung zweier Ebenen in Parameterform.jpg|zentriert|rahmenlos|600x600px]]
|Merksatz}}
|Merksatz}}




{{Box | Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Parameterform |  
{{Box |Aufgabe 12: Untersuchung der Lagebeziehung von zwei Ebenen in Parameterform |  


'''a)'''
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right) </math> und eine Ebene <math>F\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)</math>.  
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right) </math> und eine Ebene <math>F\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)</math>.  
Untersuche die Lagebeziehung der beiden Ebenen.
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
 
 


'''1. Schritt:''' Setze die beiden Ebenengleichungen gleich.
'''1. Schritt:''' Setze die beiden Ebenengleichungen gleich.
<math>\left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right)= \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)</math>


{{Lösung versteckt|1=<math>\left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right)= \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}}




'''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf.  
'''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf.  


<math>\begin{vmatrix} 1+s+3t=1+2r+5u \\ 4-2s+t=2+3r+4u \\ s-t=3-2r-3u \end{vmatrix} \Leftrightarrow \begin{vmatrix} -s+3t-2r+5u=0 \\ {-}2s+t-3r-4u=-2 \\ s-t+2r+3u=3 \end{vmatrix}</math>
{{Lösung versteckt|1=<math>\begin{vmatrix} 1+s+3t=1+2r+5u \\ 4-2s+t=2+3r+4u \\ s-t=3-2r-3u \end{vmatrix} \Leftrightarrow \begin{vmatrix} s+3t-2r+5u=0 \\ {-}2s+t-3r-4u=-2 \\ s-t+2r+3u=3 \end{vmatrix}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
 
 


'''3. Schritt:''' Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:  
'''3. Schritt:''' Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:  
Zeile 478: Zeile 482:
Mithilfe des Gaußverfahrens:
Mithilfe des Gaußverfahrens:


<math>\begin{vmatrix} s+3t-2r+5u=0 \\ 7t-7r-14u=-2 \\ 0=-13\end{vmatrix}</math>
{{Lösung versteckt|1=<math>\begin{vmatrix} s+3t-2r-5u=0 \\ 7t-7r-14u=-2 \\ 0=-13\end{vmatrix}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
|
|
Mithilfe des Taschenrechners:
Mithilfe des Taschenrechners:


<math>linSolve\begin{pmatrix}\begin{cases} s+3t-2r+5u=0 \\ 7t-7r-14u=-2, \{s,t,r,u\}\\ 0=-13\end{cases} \end{pmatrix}</math>
{{Lösung versteckt|1=<math>linSolve\begin{pmatrix}\begin{cases} s+3t-2r-5u=0 \\ {-}2s+t-3r-4u=-2, \{s,t,r,u\}\\ s-t+2r+3u=3\end{cases} \end{pmatrix}</math>


                      "Keine Lösung gefunden"
                                  "Keine Lösung gefunden"|2=Lösung anzeigen|3=Lösung verbergen}}
}}
}}
'''4. Schritt:''' Interpretiere die Lösung des Gleichungssystems:  
'''4. Schritt:''' Interpretiere die Lösung des Gleichungssystems:  


In der dritten Zeile der Lösungsmatrix befindet sich ein Widerspruch, sodass das LGS keine Lösung besitzt: <math>L=\{\}</math>. Der Taschenrechner zeigt diese Interpretation direkt unterhalb der Lösungsmatrix an. Die beiden Ebenen sind somit parallel.
{{Lösung versteckt|1=
 
In der dritten Zeile der Lösungsmatrix befindet sich ein Widerspruch, sodass das LGS keine Lösung besitzt: <math>L=\{\}</math>. Der Taschenrechner zeigt diese Interpretation direkt unterhalb der Lösungsmatrix an. Die beiden Ebenen sind somit parallel.|2=Lösung anzeigen|3=Lösung verbergen}}
| Hervorhebung1}}
 
{{Box | Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Parameterform |


'''b)'''
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right) </math> und eine Ebene <math>F\colon \vec{x}=\left( \begin{matrix} 1\\ 3\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 4\\ 1\\ 3 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 2\\ 4\\ 3 \end{matrix} \right)</math>.  
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right) </math> und eine Ebene <math>F\colon \vec{x}=\left( \begin{matrix} 1\\ 3\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 4\\ 1\\ 3 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 2\\ 4\\ 3 \end{matrix} \right)</math>.  
Untersuche die Lagebeziehung der beiden Ebenen.
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
 




'''1. Schritt:''' Setze die beiden Ebenengleichungen gleich.
'''1. Schritt:''' Setze die beiden Ebenengleichungen gleich.
<math>\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right)= \left( \begin{matrix} 1\\ 3\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 4\\ 1\\ 3 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 2\\ 4\\ 3\end{matrix} \right)</math>


{{Lösung versteckt|1=<math>\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right)= \left( \begin{matrix} 1\\ 3\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 4\\ 1\\ 3 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 2\\ 4\\ 3\end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}}


'''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf.  
'''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf.  


<math>\begin{vmatrix} 1+2r+3s=1+4t+2u \\ 2+3r+2s=3+t+4u \\ 5+r+4s=2+3t+3u \end{vmatrix} \Leftrightarrow \begin{vmatrix} 2r+3s-4t-2u=0 \\ 3r+2s-t-4u=1 \\ r+4s-3t-3u=-3 \end{vmatrix}</math>
{{Lösung versteckt|1=<math>\begin{vmatrix} 1+2r+3s=1+4t+2u \\ 2+3r+2s=3+t+4u \\ 5+r+4s=2+3t+3u \end{vmatrix} \Leftrightarrow \begin{vmatrix} 2r+3s-4t-2u=0 \\ 3r+2s-t-4u=1 \\ r+4s-3t-3u=-3 \end{vmatrix}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
 
 


'''3. Schritt:''' Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:  
'''3. Schritt:''' Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:  
Zeile 517: Zeile 514:
Mithilfe des Gaußverfahrens:
Mithilfe des Gaußverfahrens:


<math>\begin{vmatrix} r+\frac{3}{2}-2t-u=0 \\ s-2t+\frac{2}{5}u=-\frac{2}{5} \\ t-\frac{3}{4}u=-\frac{1}{2} \end{vmatrix}</math>
{{Lösung versteckt|1=<math>\begin{vmatrix} r+\frac{3}{2}s-2t-u=0 \\ s-2t+\frac{2}{5}u=-\frac{2}{5} \\ t-\frac{3}{4}u=-\frac{1}{2} \end{vmatrix}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
|
|
Mithilfe des Taschenrechners:
Mithilfe des Taschenrechners:


<math>linSolve\begin{pmatrix}\begin{cases} 2r+3s-4t-2u=0 \\ 3r+2s-t-4u=1, \{r,s,t,u\}\\ r+4s-3t-3u=-3\end{cases} \end{pmatrix}</math>
{{Lösung versteckt|1=linSolve<math>\begin{pmatrix}\begin{cases} 2r+3s-4t-2u=0 \\ 3r+2s-t-4u=1, \{r,s,t,u\}\\ r+4s-3t-3u=-3\end{cases} \end{pmatrix}</math>


                       \{\}
                       <math>\{\frac{17c1}{20}+\frac{11}{10},\frac{11c1}{10}-\frac{7}{5},\frac{3c1}{4}-\frac{1}{2}\}</math>
|2=Lösung anzeigen|3=Lösung verbergen}}
}}
}}
'''4. Schritt:''' Interpretiere die Lösung des Gleichungssystems:  
'''4. Schritt:''' Interpretiere die Lösung des Gleichungssystems:  


Die Lösungsmenge beträgt: <math>L=\{\}</math>. Die beiden Ebenen schneiden sich in einer Schnittgeraden.
{{Lösung versteckt|1=
Die Lösungsmenge beträgt:<math>L=\{\frac{17c1}{20}+\frac{11}{10},\frac{11c1}{10}-\frac{7}{5},\frac{3c1}{4}-\frac{1}{2}\}</math>. Die beiden Ebenen schneiden sich in einer Schnittgeraden.|2=Lösung anzeigen|3=Lösung verbergen}}


'''5. Schritt:''' Bestimme die Schnittgerade:
'''5. Schritt:''' Bestimme die Schnittgerade:


{{2Spalten
|
{{Lösung versteckt|1=
Stelle die dritte Gleichung zu <math>t</math> um:
Stelle die dritte Gleichung zu <math>t</math> um:


Zeile 549: Zeile 551:
Stelle die Schnittgerade auf:
Stelle die Schnittgerade auf:


<math>g\colon \vec{x}=\left( \begin{matrix} \frac{27}{5}\\ {-}\frac{9}{2}\\ {-}\frac{17}{10} \end{matrix} \right) + t \cdot \left( \begin{matrix} 5\\ \frac{19}{4}\\ \frac{21}{4} \end{matrix} \right) </math>
<math>g\colon \vec{x}=\left( \begin{matrix} \frac{27}{5}\\ {-}\frac{9}{2}\\ {-}\frac{17}{10} \end{matrix} \right) + t \cdot \left( \begin{matrix} 5\\ \frac{19}{4}\\ \frac{21}{4} \end{matrix} \right) </math>|2=Lösung anzeigen|3=Lösung verbergen}}
| Hervorhebung1}}
|
{{Lösung versteckt|1=
Setze die Werte für <math>r</math> und <math>s</math> aus der Lösungsmenge in die Ebenengleichung <math>E</math> ein:
 
<math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + (\frac{17}{20}u-\frac{11}{10}) \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + (\frac{11}{10}u-\frac{7}{5}) \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right)</math>
 
Stelle die Schnittgerade auf:
 
<math>g\colon \vec{x}=\left( \begin{matrix} \frac{27}{5}\\ {-}\frac{9}{2}\\ {-}\frac{17}{10} \end{matrix} \right) + t \cdot \left( \begin{matrix} 5\\ \frac{19}{4}\\ \frac{21}{4} \end{matrix} \right) </math>|2=Lösung anzeigen|3=Lösung verbergen}}
}}
 
|Hervorhebung1| Farbe={{Farbe|orange}}}}


{{Box|Aufgabe 9: Ergebnisse interpretieren|
{{Box|Aufgabe 13: Ergebnisse interpretieren|


Zur Untersuchung der Lagebeziehung zweier Ebenen, wurden die Ebenengleichungen gleichgesetzt und das zugehörige Gleichungssystem aufgestellt. Betrachte die Ausgabe des Taschenrechners und interpretiere die jeweilige Situation geometrisch.
Zur Untersuchung der Lagebeziehung zweier Ebenen, wurden die Ebenengleichungen gleichgesetzt und das zugehörige Gleichungssystem aufgestellt. Betrachte die Ausgabe des Taschenrechners und interpretiere die jeweilige Situation geometrisch ohne nachzurechnen.


'''a)''' 
'''a)''' 


<math>linSolve\begin{pmatrix}\begin{cases} r-0{,}5u=0{,}5\\ s-u=0{,}5, \{r,s,t,u\}\\ t-1{,}5u=1\end{cases} \end{pmatrix}</math>
linSolve<math>\begin{pmatrix}\begin{cases} r-0{,}5u=0{,}5\\ s-u=0{,}5, \{r,s,t,u\}\\ t-1{,}5u=1\end{cases} \end{pmatrix}</math>
    
    
                       <math>\{\}</math>
                       <math>\{0{,}5c2+0{,}5,c2+0{,}5,1{,}5c2+1,c2\}</math>




Zeile 567: Zeile 580:
'''b)''' 
'''b)''' 


<math>linSolve\begin{pmatrix}\begin{cases} r-t-u=2\\ s-t-3u=-5, \{r,s,t,u\}\\ 0=-5\end{cases} \end{pmatrix}</math>
linSolve<math>\begin{pmatrix}\begin{cases} r-t-u=2\\ s-t-3u=-5, \{r,s,t,u\}\\ r-s+2u=2\end{cases} \end{pmatrix}</math>


                       "Keine Lösung gefunden"
                       "Keine Lösung gefunden"


{{Lösung versteckt|1=Das Gleichungssystem besitzt keine Lösung, da sich in der dritten Zeile ein Widerspruch befindet. Die Ebenen liegen somit parallel zueinander.|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=Das Gleichungssystem besitzt keine Lösung. Die Ebenen liegen somit parallel zueinander.|2=Lösung anzeigen|3=Lösung verbergen}}


'''c)''' 
'''c)''' 


<math>linSolve\begin{pmatrix}\begin{cases} r-3s-2t-5u=3\\ 7s-7t+14u=7, \{r,s,t,u\}\\0=0\end{cases} \end{pmatrix}</math>
linSolve<math>\begin{pmatrix}\begin{cases} 3r-1{,}5s+6t-0{,}9u=0\\ {-}r+0{,}5s-2t+0{,}3u=0, \{r,s,t,u\}\\{-}1{,}5r+\frac{3}{4}s-3t-0{,}45=0\end{cases} \end{pmatrix}</math>


                       <math>\{\}</math>
                       <math>\{-2c4+0{,}5c5-0{,}3,c5,c4,-1\}</math>


{{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da zwei Parameter frei wählbar sind, sind die beiden Ebenen identisch.|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da zwei Parameter frei wählbar sind, sind die beiden Ebenen identisch.|2=Lösung anzeigen|3=Lösung verbergen}}
Zeile 584: Zeile 597:


====&#x2B50;Ebenengleichungen in Parameter- und Koordinatenform====
====&#x2B50;Ebenengleichungen in Parameter- und Koordinatenform====
{{Box|&#x2B50;Merke: Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform untersuchen |
{{Box|&#x2B50;Merke: Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform untersuchen |Seien durch <math>E\colon \vec{x}=\vec{a}+r\cdot\vec{u}+s\cdot\vec{v}</math> eine Ebene in Parameterform und durch <math>F\colon n_1x_1+n_2x_2+n_3x_3=d</math> eine Ebene in Koordinatenform gegeben. Zur Untersuchung ihrer Lagebeziehung kannst du entsprechend des folgenden Schemas vorgehen:
 
[[Datei:Vorgehen zur Untersuchung der Lagebeziehung von zwei Ebenen.jpg|zentriert|rahmenlos|600x600px]]
[[Datei:Vorgehen zur Untersuchung der Lagebeziehung von zwei Ebenen.jpg|zentriert|rahmenlos|600x600px]]
|Merksatz}}
|Merksatz}}


{{Box | &#x2B50;Beispiel: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform |  
{{Box|&#x2B50;Aufgabe 14: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform|  


Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)</math> und eine Ebene <math>F\colon -1{,}5x_1+3x_2-1{,}5x_3=4{,}5</math>.  
'''a)''' Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)</math> und eine Ebene <math>F\colon -1{,}5x_1+3x_2-1{,}5x_3=4{,}5</math>.  
Untersuche die Lagebeziehung der beiden Ebenen.
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.




'''1. Schritt:''' Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen.
'''1. Schritt:''' Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen:


Hierfür muss gelten, dass <math>\vec{n} \ast \vec{u}=0</math> und <math>\vec{n} \ast \vec{v}=0</math>.
{{Lösung versteckt|1=Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors.|2=Tipp anzeigen|3=Tipp verbergen}}
 
{{Lösung versteckt|1=Es muss gelten, dass <math>\vec{n} \ast \vec{u}=0</math> und <math>\vec{n} \ast \vec{v}=0</math>.


<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} {-}1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right)=-1{,}5+0+1{,}5=0</math>
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} {-}1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right)=-1{,}5+0+1{,}5=0</math>


<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} -1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)=-3+3+0=0</math>
<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} -1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)=-3+3+0=0</math>|2=Lösung anzeigen|3=Lösung verbergen}}
 




'''2.Schritt:''' Interpretiere die Lösung der Skalarprodukte:  
'''2.Schritt:''' Interpretiere die Lösung der Skalarprodukte:  


Da beide Skalarprodukte der jeweiligen Vektoren <math>0</math> sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.
{{Lösung versteckt|1=Da beide Skalarprodukte der jeweiligen Vektoren <math>0</math> sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.|2=Lösung anzeigen|3=Lösung verbergen}}




'''3. Schritt:''' Überprüfe die Lagebeziehung mithilfe der Punktprobe:


'''3. Schritt:''' Überprüfe die Lagebeziehung mithilfe der Punktprobe.  
{{Lösung versteckt|1=Verwende für die Punktprobe den Aufpunkt der Ebene <math>E</math>.|2=Tipp anzeigen|3=Tipp verbergen}}


Setze hierfür den Aufpunkt der Ebene <math>E</math> in die Ebenengleichung der Ebene <math>F</math> ein.
{{Lösung versteckt|1=Setze den Aufpunkt der Ebene <math>E</math> in die Ebenengleichung der Ebene <math>F</math> ein.


<math>-1{,}5\cdot2+3\cdot1-1{,}5\cdot(-3)=4{,}5\checkmark</math>
<math>-1{,}5\cdot2+3\cdot1-1{,}5\cdot(-3)=4{,}5\checkmark</math>|2=Lösung anzeigen|3=Lösung verbergen}}




'''4. Schritt:''' Interpretiere die Lösung der Punktprobe.
'''4. Schritt:''' Interpretiere die Lösung der Punktprobe:


Da der Aufpunkt die Koordinatengleichung von <math>F</math> erfüllt, liegt der Aufpunkt in <math>F</math>. Da wir bereits wissen, dass die Ebenen entweder parallel oder identisch sind, haben wir damit gezeigt, dass <math>E</math> und <math>F</math> identisch sind.
{{Lösung versteckt|1=Da der Aufpunkt die Koordinatengleichung von <math>F</math> erfüllt, liegt der Aufpunkt in <math>F</math>. Da wir bereits wissen, dass die Ebenen entweder parallel oder identisch sind, haben wir damit gezeigt, dass <math>E</math> und <math>F</math> identisch sind.|2=Lösung anzeigen|3=Lösung verbergen}}
| Hervorhebung1}}


{{Box | &#x2B50;Beispiel: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform |


'''b)'''
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 8\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 5\\ 0\\ {-}1 \end{matrix} \right)</math> und eine Ebene <math>F\colon x_1-x_2+3x_3=12</math>.  
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 8\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 5\\ 0\\ {-}1 \end{matrix} \right)</math> und eine Ebene <math>F\colon x_1-x_2+3x_3=12</math>.  
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.




'''1. Schritt:''' Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen.
'''1. Schritt:''' Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen:


Hierfür muss gelten, dass <math>\vec{n} \ast \vec{u}=0</math> und <math>\vec{n} \ast \vec{v}=0</math>.
{{Lösung versteckt|1=Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors.|2=Tipp anzeigen|3=Tipp verbergen}}


<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 1\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right)=-4-1+3=-2</math>
{{Lösung versteckt|1=Es muss gelten, dass <math>\vec{n} \ast \vec{u}=0</math> und <math>\vec{n} \ast \vec{v}=0</math>.
 
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 1\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right)=-4-1+3=-2</math>|2=Lösung anzeigen|3=Lösung verbergen}}




'''2.Schritt:''' Interpretiere die Lösung der Skalarprodukte:  
'''2.Schritt:''' Interpretiere die Lösung der Skalarprodukte:  


Da das Skalarprodukt des ersten Richtungsvektors bereits <math>\neq0</math> ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden.
{{Lösung versteckt|1=Da das Skalarprodukt des ersten Richtungsvektors bereits <math>\neq0</math> ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden.|2=Lösung anzeigen|3=Lösung verbergen}}


'''3. Schritt:''' Bestimme die Schnittgerade:  
'''3. Schritt:''' Bestimme die Schnittgerade:  


Forme hierfür zunächst die Ebenengleichung <math>E</math> um:  
{{Lösung versteckt|1=Schreibe mithilfe der Ebenengleichung <math>E</math>  die Gleichungen für die einzelnen Koordinaten auf.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
 
{{Lösung versteckt|1=Setze die Werte für <math>x_1,x_2</math> und <math>x_3</math> in die Ebenengleichung <math>F</math> ein.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
 
{{Lösung versteckt|Setze <math>s</math> in die Ebenengleichung <math>E</math> ein, um anschließend die Geradengleichung aufstellen zu können.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
 
{{Lösung versteckt|1=Durch Umformen der Ebenengleichung erhält man:


<math>x_1=8-4r+5s</math>,<math>x_2=r</math>,<math>x_3=2+r-s</math>
<math>x_1=8-4r+5s</math>,<math>x_2=r</math>,<math>x_3=2+r-s</math>


Setze die Werte für <math>x_1,x_2</math> und <math>x_3</math> in die Ebenengleichung <math>F</math> ein:
Einsetzen der Werte in die Ebenengleichung ergibt:


<math>(8-4r+5s)-r+3(2+r-s)=12\Leftrightarrow s=r-1</math>
<math>(8-4r+5s)-r+3(2+r-s)=12\Leftrightarrow s=r-1</math>


Setze schließlich <math>s</math> in die Ebenengleichung <math>E</math> ein:
Einsetzen von <math>s</math> in <math>E</math> ergibt:


<math>E\colon \vec{x}=\left( \begin{matrix} 8\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right) + (r-1) \cdot \left( \begin{matrix} 5\\ 0\\ {-}1 \end{matrix} \right)</math>
<math>E\colon \vec{x}=\left( \begin{matrix} 8\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right) + (r-1) \cdot \left( \begin{matrix} 5\\ 0\\ {-}1 \end{matrix} \right)</math>


Stelle die Geradengleichung auf:
Nun kannst du die Geradengleichung aufstellen:


<math>g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 3 \end{matrix} \right) + t \cdot \left( \begin{matrix} 1\\ 1\\ 0 \end{matrix} \right)</math>
<math>g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 3 \end{matrix} \right) + t \cdot \left( \begin{matrix} 1\\ 1\\ 0 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}}|
| Hervorhebung1}}
Arbeitsmethode|Farbe={{Farbe|orange}}}}


{{Box|&#x2B50;Aufgabe 10: Lagebeziehungen untersuchen.|
{{Box|&#x2B50;Aufgabe 15: Lagebeziehungen untersuchen.|


Untersuche die Lagebeziehung der jeweiligen Ebenen. Falls sich die Ebenen in einer Schnittgerade schneiden, brauchst du diese nicht zu berechnen.
Untersuche die Lagebeziehung der jeweiligen Ebenen. Falls sich die Ebenen in einer Schnittgerade schneiden, brauchst du diese nicht zu berechnen.
Zeile 683: Zeile 706:
{{Lösung versteckt|1=  
{{Lösung versteckt|1=  


Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{n}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{v}</math> der Ebene <math>F</math> liegen.  
Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen.  


<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 2\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0</math>
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 2\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0</math>
Zeile 720: Zeile 743:


====&#x2B50;Beide Ebenengleichungen in Koordinatenform====
====&#x2B50;Beide Ebenengleichungen in Koordinatenform====
{{Box|&#x2B50;Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform |
{{Box|&#x2B50;Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform |Seien durch <math>E\colon n_1x_1+n_2x_2+n_3x_3=d</math> und  <math>F\colon m_1x_1+m_2x_2+m_3x_3=e</math> zwei Ebenen in Koordinatenform gegeben. Zur Untersuchung ihrer Lagebeziehung kannst du entsprechend des folgenden Schemas vorgehen:
[[Datei:Vorgehen zur Untersuchung der Lagebeziehung von Ebenen in Koordinatenform.jpg|zentriert|rahmenlos|600x600px]]
 
[[Datei:Lagebeziehung von Ebenen in Koordinatenform.jpg|zentriert|rahmenlos|600x600px]]
|Merksatz}}
|Merksatz}}


Zeile 727: Zeile 751:


Gegeben sind eine Ebene <math>E\colon 3x_1-4x_2-x_3=4</math> und eine Ebene <math>F\colon 3x_1-3x_2+x_3=3</math>. Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
Gegeben sind eine Ebene <math>E\colon 3x_1-4x_2-x_3=4</math> und eine Ebene <math>F\colon 3x_1-3x_2+x_3=3</math>. Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.


'''1. Schritt:''' Prüfe, ob der Normalenvektor <math>\vec{n}</math> der Ebene <math>E</math> ein Vielfaches des Normalenvektors <math>\vec{m}</math> der Ebene <math>F</math> ist.
'''1. Schritt:''' Prüfe, ob der Normalenvektor <math>\vec{n}</math> der Ebene <math>E</math> ein Vielfaches des Normalenvektors <math>\vec{m}</math> der Ebene <math>F</math> ist.
Zeile 736: Zeile 758:
<math>r\cdot\vec{n}=\vec{m} \Leftrightarrow r\cdot\left( \begin{matrix} 3\\ {-}4\\ {-}1 \end{matrix} \right)=\left( \begin{matrix} 3\\ {-}3\\ 1 \end{matrix} \right) \Leftrightarrow \begin{vmatrix} 3r=3\\ {-}4r=-3 \\ {-}r=1 \end{vmatrix}</math>
<math>r\cdot\vec{n}=\vec{m} \Leftrightarrow r\cdot\left( \begin{matrix} 3\\ {-}4\\ {-}1 \end{matrix} \right)=\left( \begin{matrix} 3\\ {-}3\\ 1 \end{matrix} \right) \Leftrightarrow \begin{vmatrix} 3r=3\\ {-}4r=-3 \\ {-}r=1 \end{vmatrix}</math>


Da das LGS nicht lösbar ist, sind die Gleichungen keine Vielfachen voneinander und die Ebenen schneiden sich in einer Schnittgeraden.
Da das LGS nicht lösbar ist, sind die Vektoren keine Vielfachen voneinander und die Ebenen schneiden sich in einer Schnittgeraden.
 


'''2. Schritt:''' Bestimme die Schnittgerade.
'''2. Schritt:''' Bestimme die Schnittgerade.
Zeile 748: Zeile 769:


<math>\begin{vmatrix} 3x_1-4x_2-x_3=4 \\ 3x_1-3x_2+x_3=3\end{vmatrix} \Leftrightarrow \begin{vmatrix} 3x_1-4x_2-x_3=4 \\ x_2+2x_3=-1\end{vmatrix}</math>
<math>\begin{vmatrix} 3x_1-4x_2-x_3=4 \\ 3x_1-3x_2+x_3=3\end{vmatrix} \Leftrightarrow \begin{vmatrix} 3x_1-4x_2-x_3=4 \\ x_2+2x_3=-1\end{vmatrix}</math>
|
Mithilfe des Taschenrechners:
linSolve<math>\begin{pmatrix}\begin{cases} 3x_1-4x_2-x_3=4 \\ 3x_1-3x_2+x_3=3,\{s,t,r,u\}\end{cases} \end{pmatrix}</math>
                      \{\}
}}


Setze <math>x_3=t</math> und bestimme <math>x_1</math> und <math>x_2</math>.
Setze <math>x_3=t</math> und bestimme <math>x_1</math> und <math>x_2</math>.
Zeile 764: Zeile 778:
Stelle die Geradengleichung auf.
Stelle die Geradengleichung auf.


<math>g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} </math>| Hervorhebung1}}
<math>g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} </math>
|
Mithilfe des Taschenrechners:
 
linSolve<math>\begin{pmatrix}\begin{cases} 3x_1-4x_2-x_3=4 \\ 3x_1-3x_2+x_3=3,\{x_1,x_2,x_3\}\end{cases} \end{pmatrix}</math>
 
                      <math>\{\frac{-7c3}{3},-2c3-1,c3\}</math>
 
Stelle mithilfe der Werte aus der Lösungsmenge die Geradengleichung auf.
 
<math>g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} </math>
}}
 
| Hervorhebung1}}


{{Box|&#x2B50;Aufgabe 11: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform |
{{Box|&#x2B50;Aufgabe 16: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform |
Gegeben ist eine Ebene <math>E\colon -2x_1-3x_2+x_3=2</math>. Untersuche die Lagebeziehung zwischen dieser und den dir angezeigten Ebenen. Ziehe die Ebenen in das entsprechende Feld.
Gegeben ist eine Ebene <math>E\colon -2x_1-3x_2+x_3=2</math>. Untersuche die Lagebeziehung zwischen dieser und den dir angezeigten Ebenen. Ziehe die Ebenen in das entsprechende Feld.


Zeile 772: Zeile 799:


{{Lösung versteckt|1= Um die Lagebeziehung von zwei Ebenen in Koordinatenform zu bestimmen, benötigst du keinen Taschenrechner. Schaue dir die beiden Gleichungen gut an.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Um die Lagebeziehung von zwei Ebenen in Koordinatenform zu bestimmen, benötigst du keinen Taschenrechner. Schaue dir die beiden Gleichungen gut an.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Vergleiche die Gleichungen der zwei Ebenen miteinander. Vergleiche dabei zunächst die Normalenvektoren der Ebenen – also die linken Seiten der Gleichungen – miteinander und überprüfe, ob sie Vielfache voneinander sind. Falls das zutrifft, vergleiche auch noch die beiden rechte Seiten der Gleichungen miteinander.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
Vergleiche die Gleichungen der zwei Ebenen miteinander.
 
Die Ebenen schneiden sich, wenn die beiden Gleichungen keine Vielfachen voneinander sind.
Die Ebenen schneiden sich, wenn die beiden Gleichungen keine Vielfachen voneinander sind.


Zeile 780: Zeile 809:


Die Ebenen sind identisch, wenn die Normalenvektoren identisch oder Vielfache voneinander sind und das LGS somit unendlich viele Lösungen hat.
Die Ebenen sind identisch, wenn die Normalenvektoren identisch oder Vielfache voneinander sind und das LGS somit unendlich viele Lösungen hat.
|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}


|Arbeitsmethode}}
|Arbeitsmethode}}


{{Box|&#x2B50;Aufgabe 12: Schnitt von zwei Zeltflächen|
{{Box|&#x2B50;Aufgabe 17: Schnitt von zwei Zeltflächen|


Die beiden Seitenflächen eines Zeltes liegen in den Ebenen <math>E\colon \vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 3 \\ 4\end{pmatrix}</math> und <math>F\colon \vec{x} = \begin{pmatrix} 8 \\ 6 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ u \cdot \begin{pmatrix} 0 \\ {-}3 \\ 4 \end{pmatrix}</math>. Der Erdboden wird durch die <math>x_1x_2</math> -Ebene aufgespannt. In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem <math>50</math> cm entspricht?
Die beiden Seitenflächen eines Zeltes liegen in den Ebenen <math>E\colon \vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 3 \\ 4\end{pmatrix}</math> und <math>F\colon \vec{x} = \begin{pmatrix} 8 \\ 6 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ u \cdot \begin{pmatrix} 0 \\ {-}3 \\ 4 \end{pmatrix}</math>. Der Erdboden wird durch die <math>x_1x_2</math> -Ebene aufgespannt.


{{Lösung versteckt|1= Mache dir zunächst eine Skizze von der Situation. Überlege dir, womit die obere Zeltkante beschrieben werden kann.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
[[Datei:Skizze- Schnittgerade zweier Zeltwände.png|rahmenlos]]
In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem <math>50</math> cm entspricht?


{{Lösung versteckt|1= Die obere Zeltkante entspricht der Schnittgeraden der beiden Ebenen. |2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Die obere Zeltkante entspricht der Schnittgeraden der beiden Ebenen. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}


{{Lösung versteckt|1= Die Höhe der Zeltkante kannst du mithilfe des Stützvektors der Schnittgeraden ermitteln. |2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1= Die Höhe der Zeltkante kannst du mithilfe des Stützvektors der Schnittgeraden ermitteln. |2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|1= Die Zeltkante entspricht der Schnittgeraden der beiden Ebenen. Um die Höhe zu bestimmen, benötigt man also den Stützvektor der Geradengleichung der Zeltkante.
{{Lösung versteckt|1= Die Zeltkante entspricht der Schnittgeraden der beiden Ebenen. Um die Höhe zu bestimmen, benötigt man also den Stützvektor der Geradengleichung der Zeltkante.
Zeile 798: Zeile 829:
Da die Ebenen in Parameterform gegeben sind, setzen wir die Gleichungen zunächst gleich und lösen dann das entsprechende LGS:
Da die Ebenen in Parameterform gegeben sind, setzen wir die Gleichungen zunächst gleich und lösen dann das entsprechende LGS:


<math>\begin{vmatrix} 8-r=8-t \\ 3s=6-3u \\ 4s=4u \end{vmatrix} \Leftrightarrow \begin{vmatrix} -r+t=0\\ 3s+3u=6 \\4s-4u=0 \end{vmatrix}</math>
<math>\begin{vmatrix} 8-r=8-t \\ 3s=6-3u \\ 4s=4u \end{vmatrix} \Leftrightarrow \begin{vmatrix} -r+t=0\\ 3s+3u=6 \\4s-4u=0 \end{vmatrix}\Leftrightarrow \begin{vmatrix} r=t\\ s+u=2 \\ s=u\end{vmatrix}</math>
 
<math>\Rightarrow \begin{vmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 3 & 6 \\ 4 & 0 & 0 & 4 & 0\end{vmatrix}</math>


<math>\Rightarrow s=u=1</math> und <math>r=t</math>
<math>\Rightarrow s=u=1</math> und <math>r=t</math>
Zeile 812: Zeile 841:
<math>g\colon \vec{x} = \left( \begin{matrix} 8\\ 3\\ 4 \end{matrix} \right) + v \cdot \left( \begin{matrix} -1\\ 0\\ 0 \end{matrix} \right)</math>
<math>g\colon \vec{x} = \left( \begin{matrix} 8\\ 3\\ 4 \end{matrix} \right) + v \cdot \left( \begin{matrix} -1\\ 0\\ 0 \end{matrix} \right)</math>


Da die Schnittgerade der oberen Zeltkante entspricht, lässt sich aus dem Stützvektor der Geraden die Höhe ablesen. Die Höhe kann mithilfe der <math>x_3</math>-Koordinate des Vektors bestimmt werden.
Durch den Richtungsvektor der Geraden wird deutlich, dass sich die Schnittgerade parallel zur <math>x_1x_2</math> -Ebene befindet und somit überall den gleichen Abstand zum Boden hat. Da die Schnittgerade der oberen Zeltkante entspricht, lässt sich aus dem Stützvektor der Geraden die Höhe ablesen. Die Höhe kann mithilfe der <math>x_3</math>-Koordinate des Vektors bestimmt werden.


Die obere Zeltkante befindet sich also in <math>2</math> m Höhe.
Die obere Zeltkante befindet sich also in <math>2</math> m Höhe.
Zeile 824: Zeile 853:
{{Box | &#x2B50; Merke: Berechnung des Winkel zwischen zwei Ebenen |  
{{Box | &#x2B50; Merke: Berechnung des Winkel zwischen zwei Ebenen |  
Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Dazu kannst du die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Somit kann das Berechnen des Schnittwinkels zwischen zwei Ebenen auf das Berechnen des Winkels zwischen zwei Vektoren zurückgeführt werden.
Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Dazu kannst du die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Somit kann das Berechnen des Schnittwinkels zwischen zwei Ebenen auf das Berechnen des Winkels zwischen zwei Vektoren zurückgeführt werden.
Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]]. | Merksatz}}  
Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in das Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum|Ebenen im Raum]]. | Merksatz}}  


{{Box | &#x2B50; Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen |  
{{Box | &#x2B50; Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen |  
Zeile 834: Zeile 863:
Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Mit der obigen Formel erhält man deshalb für <math>\alpha</math> immer Werte zwischen <math>0^{\circ}</math> und <math>90^{\circ}</math>. | Merksatz}}
Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Mit der obigen Formel erhält man deshalb für <math>\alpha</math> immer Werte zwischen <math>0^{\circ}</math> und <math>90^{\circ}</math>. | Merksatz}}


{{Box | Beispiel&#x2B50;: Winkel berechnen zwischen zwei Ebenen |  
{{Box | &#x2B50;Beispiel: Winkel berechnen zwischen zwei Ebenen |  


Gegeben sind zwei Ebenen <math>E</math> und <math>F</math> mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix}+ s \cdot \begin{pmatrix} 1 \\ 1 \\ 0\end{pmatrix}</math> und <math>F\colon 7x_1+x_2-3x_3=1</math>. Berechne den Schnittpunkt zwischen den Ebenen.
Gegeben sind zwei Ebenen <math>E</math> und <math>F</math> mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix}+ s \cdot \begin{pmatrix} 1 \\ 1 \\ 0\end{pmatrix}</math> und <math>F\colon 7x_1+x_2-3x_3=1</math>. Berechne den Schnittpunkt zwischen den Ebenen.
Zeile 848: Zeile 877:
'''3. Schritt:''' Auflösen der Gleichung.
'''3. Schritt:''' Auflösen der Gleichung.


<math>\alpha = arccos(\frac{16}{3 \cdot \sqrt {59}}) \Leftrightarrow \alpha \approx 46{,}03^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>46{,}03^{\circ}</math>.| Hervorhebung1}}
<math>\alpha = \cos^{-1}(\frac{15}{3 \cdot \sqrt {59}}) \Leftrightarrow \alpha \approx 49{,}39^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>49{,}39^{\circ}</math>.| Hervorhebung1}}




{{Box | Aufgabe 13&#x2B50;: Schnittwinkel zwischen Ebenen |  
{{Box | &#x2B50; Aufgabe 18: Schnittwinkel zwischen Ebenen |  


Sei <math>E</math> eine Ebene mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}</math> ,
Sei <math>E</math> eine Ebene mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}</math> ,
Zeile 869: Zeile 898:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:


<math>\alpha = arccos(\frac{4}{\sqrt {56}}) \Leftrightarrow \alpha \approx 57{,}69^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>57{,}69^{\circ}</math>.
<math>\alpha = \cos^{-1}(\frac{4}{\sqrt {56}}) \Leftrightarrow \alpha \approx 57{,}69^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>57{,}69^{\circ}</math>.


|2=Lösung anzeigen|3=Lösung verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}
Zeile 885: Zeile 914:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:


<math>\alpha = arccos(0) \Leftrightarrow \alpha = 90^{\circ}</math> Der Winkel zwischen den Ebenen <math>F</math> und <math>H</math> beträgt ca. <math>90^{\circ} </math>.
<math>\alpha = \cos^{-1}(0) \Leftrightarrow \alpha = 90^{\circ}</math> Der Winkel zwischen den Ebenen <math>F</math> und <math>H</math> beträgt ca. <math>90^{\circ} </math>.


|2=Lösung anzeigen|3=Lösung verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}


'''c)''' E und H.
'''c)''' <math>E</math> und <math>H</math>.


{{Lösung versteckt|1=
{{Lösung versteckt|1=
Zeile 901: Zeile 930:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:


<math>\alpha = arccos(\frac{7}{\sqrt {69}}) \Leftrightarrow \alpha \approx 32{,}57^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>H</math> beträgt ca. <math>32{,}57^{\circ}</math>.
<math>\alpha = \cos^{-1}(\frac{7}{\sqrt {69}}) \Leftrightarrow \alpha \approx 32{,}57^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>H</math> beträgt ca. <math>32{,}57^{\circ}</math>.
   
   
|2=Lösung anzeigen|3=Lösung verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}
Zeile 908: Zeile 937:




{{Box | Aufgabe 14&#x2B50;: Ebenen gesucht|  
{{Box | &#x2B50; Aufgabe 19: Ebenen gesucht|  


Der Winkel zwischen den beiden Vektoren <math>\vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math>\vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> beträgt <math>67{,}62^{\circ}</math>.  
Der Winkel zwischen den beiden Vektoren <math>\vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math>\vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> beträgt <math>67{,}62^{\circ}</math>.  
Zeile 927: Zeile 956:




{{Box | Aufgabe 15&#x2B50;: Bank am Wanderweg |
{{Box | &#x2B50; Aufgabe 20: Bank am Wanderweg |


An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math>S\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0{,}4 \\ 0\end{pmatrix}, r,s \in [0, 1]</math> und die Rückenlehne durch die Ebene <math>R_1\colon -x_2 + 0{,}4 x_3 = -0{,}2</math> beschrieben werden kann.
An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math>S\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0{,}4 \\ 0\end{pmatrix}, r,s \in [0, 1]</math> und die Rückenlehne durch die Ebene <math>R_1\colon -x_2 + 0{,}4 x_3 = -0{,}2</math> beschrieben werden kann.
Zeile 945: Zeile 974:
<math>\cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{2}{5}}{1 \cdot \sqrt{\frac{29}{25}}}</math>
<math>\cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{2}{5}}{1 \cdot \sqrt{\frac{29}{25}}}</math>


Umstellen der Formel ergibt: <math> \gamma=arccos \left( \frac{\frac{2}{5}}{\sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2^{\circ}</math>
Umstellen der Formel ergibt: <math> \gamma=\cos^{-1} \left( \frac{\frac{2}{5}}{\sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2^{\circ}</math>


Wie in der Abbildung zu sehen wurde der Winkel <math>\gamma</math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math>\alpha</math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180^\circ - \gamma </math> berechnet: <math>180^{\circ} - 68{,}2^{\circ} = 111{,}8^{\circ}</math>. Mit einem Wert von <math> 111{,}8^{\circ}</math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}}
Wie in der Abbildung zu sehen wurde der Winkel <math>\gamma</math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math>\alpha</math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180^\circ - \gamma </math> berechnet: <math>180^{\circ} - 68{,}2^{\circ} = 111{,}8^{\circ}</math>. Mit einem Wert von <math> 111{,}8^{\circ}</math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}}
Zeile 969: Zeile 998:
<math>\cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math>
<math>\cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math>


Umstellen der Formel ergibt: <math> \beta=arccos \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}}
Umstellen der Formel ergibt: <math> \beta=\cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}}


| Arbeitsmethode | Farbe={{Farbe|grün}}}}
| Arbeitsmethode | Farbe={{Farbe|grün}}}}

Aktuelle Version vom 23. Juni 2021, 23:28 Uhr


Info

In diesem Lernpfadkapitel geht es um die Lagebeziehung zwischen einer Gerade und einer Ebene oder zwischen zwei Ebenen inklusive der Berechnung der Schnittwinkel. Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen und anschließend euer Wissen in Übungsaufgaben anwenden könnt.


Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
  • Aufgaben und Kapitel, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!


Lagebeziehung Gerade-Ebene

Mögliche Lagebeziehungen zwischen Gerade und Ebene

Merke:

Zwischen einer Geraden und einer Ebene gibt es drei mögliche Lagebeziehungen.

Lagebeziehung Gerade Ebene schneidend.jpg

Die Gerade schneidet die Ebene.

Lagebeziehung Gerade Ebene parallel.jpg

Die Gerade und die Ebene liegen parallel.

Lagebeziehung Gerade Ebene liegtin.jpg

Die Gerade liegt in der Ebene.


Untersuchung der Lagebeziehung zwischen Gerade und Ebene

Ebene in Parameterform

Aufgabe 1: Lückentext zur Lagebeziehung zwischen Gerade und Ebene



Vorgehen: Untersuchung der Lagebeziehung zwischen Gerade und Ebene
Vorgehen Lagebeziehung Gerade und Ebene.jpg


Beispiel: Untersuchung der Lagebeziehung zwischen Gerade und Ebene


Gegeben sind eine Ebene und eine Gerade . Untersuche die Lagebeziehung der Gerade und der Ebene und bestimme gegebenenfalls den Schnittpunkt.


1. Schritt: Setze die Geraden- und Ebenengleichung gleich:


2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf:


3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:


4. Schritt: Interpretiere die Lösung des Gleichungssystems anhand der Anzahl der Lösungen. Da das Gleichungssystem nur eine Lösung hat, besitzen die Ebene und die Gerade nur einen gemeinsamen Punkt. Also schneidet die Gerade die Ebene.


5. Schritt: Da sich die Ebene und die Gerade schneiden, kannst du den Schnittpunkt der beiden berechnen. Setze dafür den Parameter in die Geradengleichung ein:

Alternativ kannst du die Parameter und in die Ebenengleichung einsetzen und erhältst den gleichen Punkt.


Aufgabe 2: Untersuchung der Lagebeziehung zwischen Gerade und Ebene

Gegeben ist eine Ebene . Untersuche die Lagebeziehung zwischen dieser Ebene und den untenstehenden Geraden. Ziehe die Geraden in das entsprechende Feld.



1. Setze die Geradengleichung mit der Ebenengleichung gleich.

2. Stelle ein LGS auf.

3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner.

4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsamen Punkte die Gerade und die Ebene haben. Daran kannst du die Lagebeziehung erkennen.


Aufgabe 3: Schnittpunktberechnung

Gegeben sind eine Gerade und eine Ebene .

Zeige, dass sich die Gerade und die Ebene schneiden und gib den Schnittpunkt an.

1. Setze die Geradengleichung mit der Ebenengleichung gleich.

2. Stelle ein LGS auf.

3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner.

4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsamen Punkte die Gerade und die Ebene haben. Daran kannst du die Lagebeziehung erkennen.

5. Berechne den Schnittpunkt, indem du den Wert für in die Geradengleichung einsetzt.

1. Setze die Geradengleichung mit der Ebenengleichung gleich:

2. Stelle ein LGS auf:


3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner:


4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsame Punkte die Gerade und die Ebene haben. Da das LGS genau eine Lösung besitzt, haben die Gerade und die Ebene einen gemeinsamen Punkt. Somit schneiden sie sich.

5. Berechne den Schnittpunkt, indem du den Wert für in die Geradengleichung einsetzt:


Aufgabe 4: Schatten eines Sonnensegels

Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind und . Die Terrasse wird modelliert durch die Ebene . Die Richtung der Sonnenstrahlen entspricht dem Vektor . In welchem Bereich hat Frau Meier nun Schatten?


Hinweis: Da Frau Meier eine sehr große Terrasse hat, kannst du davon ausgehen, dass der Schatten vollständig innerhalb der Terrasse liegt.


Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.

Hier siehst du eine Skizze, die die oben beschriebene Situation abbildet. Überlege dir, welche Punkte du für die Aufgabe bestimmen musst.

Aufgabe Sonnensegel Spurpunkte.png
Nachdem ihr die Geraden- und Ebenengleichung gleichgesetzt habt, reicht es, wenn ihr euch die Gleichung für die -Koordinate anschaut.

1. Schritt: Mache eine Skizze von der Situation. Aufgabe Sonnensegel Spurpunkte.png

2. Schritt: Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: , ,

3. Schritt: Berechne die Schnittpunkte der Geraden mit der Ebene.

Berechnung von :

Setze die Geraden- und Ebenengleichung gleich:

Notiere die Zeilen der Gleichung als Gleichungssystem:

Berechne den Parameter , indem du die 3. Gleichung nach umformst:

Durch Einsetzen von in die Geradengleichung erhältst den Punkt .

Berechnung von :

Setze die Geraden- und Ebenengleichung gleich:

Notiere die Zeilen der Gleichung als Gleichungssystem:

Löse die 3. Gleichung nach auf:

Durch Einsetzen von in die Geradengleichung erhältst den Punkt .

Berechnung von :

Notiere die Zeilen der Gleichung als Gleichungssystem:

Löse die 3. Gleichung nach auf:

Durch Einsetzen von in die Geradengleichung erhältst den Punkt .

Die Schattenfläche wird also durch das Dreieck mit den Eckpunkten und begrenzt.

⭐Ebene in Koordinatenform

⭐Merke: Die Lagebeziehung einer Gerade und einer Ebene mit dem Normalenvektor untersuchen

Bei der Bestimmung der Lagebeziehung zwischen einer Gerade und einer Ebene kann dir der Normalenvektor der Ebene helfen. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in das Kapitel Ebenen im Raum.

Lagebeziehung Gerade Ebene parallel Normalenvektor.jpg

Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene orthogonal zueinander sind und Gerade und Ebene keinen gemeinsamen Punkt besitzen, so sind sie parallel zueinander.

Lagebeziehung Gerade Ebene liegtin Normalenvektor.jpg

Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene orthogonal zueinander sind und Gerade und Ebene unendlich viele gemeinsame Punkte besitzen, so liegt die Gerade in der Ebene.

Lagebeziehung Gerade Ebene schneidend Normalenvektor.jpg

Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene nicht orthogonal zueinander sind, dann schneiden sich die Gerade und die Ebene und es kann ein Schnittpunkt bestimmt werden.


⭐Vorgehen: Untersuchung der Lagebeziehung zwischen Gerade und Ebene mit dem Normalenvektor

Gegeben sind eine Gerade und eine Ebene mit dem Normalenvektor .

Vorgehen Lagebeziehung Gerade und Ebene3.jpg.jpg


⭐ Aufgabe 5: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform


a) Gegeben sind eine Ebene und eine Gerade . Bestimme die Lagebeziehung von Gerade und Ebene.


1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.

Verwende des Skalarprodukt.
Wenn das Skalarprodukt zweier Vektoren ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich ist, dann sind sie nicht orthogonal.
. Da das Skalarprodukt ergibt, gilt .


2. Schritt: Prüfe durch eine Punktprobe, ob der Aufpunkt der Gerade in der Ebene liegt.


Der Aufpunkt liegt nicht in der Ebene. Daher verlaufen die Gerade und die Ebene parallel zueinander.


b) Gegeben sind eine Ebene und eine Gerade . Bestimme die Lagebeziehung von Gerade und Ebene.

1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.

Verwende des Skalarprodukt.
Wenn das Skalarprodukt zweier Vektoren ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich ist, dann sind sie nicht orthogonal.
. Da das Skalarprodukt ergibt, gilt .


2. Schritt: Prüfe durch eine Punktprobe, ob der Aufpunkt der Gerade in der Ebene liegt.


Der Aufpunkt liegt in der Ebene. Daher liegt die Gerade in der Ebene .

c) Gegeben sind eine Ebene und eine Gerade . Bestimme die Lagebeziehung von Gerade und Ebene.

1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.

Verwende des Skalarprodukt.
Wenn das Skalarprodukt zweier Vektoren ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich ist, dann sind sie nicht orthogonal.
. Da das Skalarprodukt ergibt, sind und nicht orthogonal zueinander. Somit schneiden sich die Gerade und die Ebene.


2. Schritt: Berechne des Schnittpunktes.

Setze die Koordinaten der Gerade in die Ebenengleichung von ein und forme nach dem Parameter um.

Die einzelnen Koordinaten der Gerade sind: .

Setze diese Koordinaten in die Ebenengleichung von ein:

Forme nach dem Parameter um:

Setze den Parameter in die Geradengleichung ein, um den Schnittpunkt zu berechnen:

.

Die Gerade und die Ebene schneiden sich im Schnittpunkt .



⭐ Aufgabe 6: Bestimme den Parameter

Gegeben ist eine Ebene . Bestimme und in den folgenden Geraden so, dass die jeweils angegebene Lagebeziehung erfüllt ist.

a) Die Gerade soll parallel zur Ebene verlaufen.

Damit die Gerade und die Ebene parallel zueinander sind, müssen der Richtungsvektor von und der Normalenvektor von orthogonal zueinander sein.

.

Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt sein: .

b) Die Gerade soll in der Ebene liegen.

Damit die Gerade in der Ebene liegt, müssen der Richtungsvektor von und der Normalenvektor von orthogonal zueinander sein.
Wenn die Gerade in der Ebene liegt, liegt jeder Punkt auf der Gerade auch in der Ebene .
Prüfe mit der Punktprobe, ob der Aufpunkt von in der Ebene liegt.

Finde zuerst m: . Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt sein: .

Finde danach durch eine Punktprobe: Setze den Aufpunkt in die Ebenengleichung ein und löse nach auf: .

c) Die Gerade soll die Ebene schneiden.

Der Richtungsvektor der Geraden darf nicht orthogonal zum Normalenvektor von liegen.
Was bedeutet es für , wenn der Richtungsvektor der Geraden nicht orthogonal zum Normalenvektor der Ebene liegen darf?
Bestimme, welchen Wert nicht annehmen darf, damit die Gerade die Ebene schneidet.
Für ist der Richtungsvektor von orthogonal zum Normalenvektor von und die Gerade liegt parallel zur Ebene . Jeder andere Wert für ist eine richtige Lösung.


⭐ Aufgabe 7: Flugzeug

Ein Flugzeug fliegt auf eine Nebelwand zu. Seine Flugbahn wird durch die Gerade beschrieben, wobei die Zeit in Minuten nach dem Start bezeichnet. Das Flugzeug befindet sich also im Moment am Punkt . Du kannst davon ausgehen, dass es mit konstanter Geschwindigkeit fliegt. Die Ebene beschreibt die Nebelwand.

Versuche die folgenden Aufgaben ohne Taschenrechner zu lösen.

a) Begründe, dass das Flugzeug die Nebelwand trifft.

Verwende das Skalarprodukt.
. Da das Skalarprodukt ergibt, sind der Normalenvektor der Ebene und der Richtungsvektor der Gerade nicht orthogonal zueinander. Daraus können wir schließen, dass sich Gerade und Ebene schneiden. Das Flugzeug trifft also auf die Nebelwand.

b) Wo trifft das Flugzeug auf die Nebelwand und wie viele Minuten dauert es noch, bis das Flugzeug die Nebelwand erreicht?

Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.

Setze die einzelnen Koordinaten der Gerade in die Ebenengleichung ein und löse nach dem Parameter auf:

Da die Zeit in Minuten angibt, erreicht das Flugzeug den Schnittpunkt in 5 Minuten.

Berechne nun den Schnittpunkt , indem du in die Geradengleichung einsetzt. Du erhältst den Ortsvektor zum Schnittpunkt und kannst den Schnittpunkt dann ablesen: . Damit ergibt sich der Schnittpunkt .

Das Flugzeug trifft die Nebelwand in 5 Minuten im Punkt .


⭐Berechnung des Winkels zwischen Gerade und Ebene

⭐ Merke: Berechnung des Winkels zwischen Gerade und Ebene


Wenn eine Gerade eine Ebene schneidet, kannst du nicht nur den Schnittpunkt berechnen, sondern auch den Schnittwinkel. Dafür benötigen wir den Normalenvektor. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in das Kapitel Ebenen im Raum (Ebenen im Raum).


⭐ Merksatz: Winkel berechnen zwischen Gerade und Ebene


Winkel zwischen Gerade und Ebene

Sei eine Ebene mit dem Normalenvektor und eine Gerade mit dem Richtungsvektor . Der Schnittwinkel zwischen und kann mit folgender Formel berechnet werden: .

Ist nach dem Schnittwinkel gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von Gerade und Ebene eingeschlossen werden. Mit der obigen Formel erhält man deshalb für immer Werte zwischen und .

Wenn du wissen möchtest, warum du nicht - wie beim Winkel zwischen zwei Geraden - den Kosinus benutzt, kannst du das hier nachlesen:

Winkel zwischen Gerade und Ebene

Der Normalenvektor einer Ebene steht in einem Winkel zur Ebene .

Wenn man den Winkel zwischen einer Gerade und einer Ebene berechnen will, kann wie beim Winkel zwischen zwei Geraden mit der Kosinusfunktion der Winkel zwischen dem Richtungsvektor von und dem Normalenvektor von berechnet werden. In der Abbildung ist dieser Winkel mit bezeichnet. Um nun den Winkel zwischen und zu erhalten, müssen wir von abziehen. Dies entspricht aufgrund trigonometrischer Gesetzmäßigkeiten der obigen Formel mit der Sinusfunktion.


⭐ Aufgabe 8: Berechnung des Winkels zwischen Gerade und Ebene


Gegeben sind die Gerade und die Ebene . Bestimme den Winkel, unter dem sich die Gerade und die Ebene schneiden.

Nutze zur Berechnung des Winkels die Formel aus dem Merksatz. Notiere dafür den Richtungsvektor der Gerade und den Normalenvektor der Ebene.

Wenn du beide in die Formel eingesetzt hast, benötigst du den , um den Winkel ausrechnen zu können.

1. Schritt: Notiere den Richtungvektor der Gerade und den Normalenvektor der Ebene.

und

2. Schritt: Setze die Vektoren in die Formel ein.

3. Schritt: Forme die Gleichung um.

Der Schnittwinkel beträgt also .


⭐ Aufgabe 9: Trinkpäckchen


Trinkpäckchen

Eine Schulklasse nimmt auf ihrem Wandertag Trinkpäckchen mit. Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene beschrieben werden. Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die Ecken kommen. Sie wollen den Winkel berechnen, unter dem sie den Strohhalm in das Trinkpäckchen stecken müssen, um an den Saft in der gegenüberliegenden Ecke zu kommen.

Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der gegenüber liegenden Ecke anstößt, kann er durch die Gerade veranschaulicht werden: .

Kannst du den Kindern helfen, den Winkel zu berechnen, unter dem der Strohhalm in das Trinkpäckchen gesteckt werden muss, um die gegenüberliegende Ecke zu erreichen?

Überlege, wie dir der obige Merksatz helfen kann.

Gesucht wird der Winkel zwischen der Gerade und der Ebene . Der Richtungsvektor der Gerade ist . Der Normalenvektor der Ebene kann abgelesen werden: .

Einsetzen der Vektoren in die Formel liefert:

Mithilfe des Taschenrechners kann das Ergebnis berechnet werden:

Die Kinder sollten den Strohhalm also in einem Winkel von ca. in das Trinkpäckchen stecken, um an den Saft in der gegenüberliegenden Ecke zu kommen.


⭐ Aufgabe 10: Gerade gesucht


Bisher wurde mit der Formel zur Winkelberechnung nur der Winkel berechnet. Die Formel kann jedoch auch genutzt werden, um bei einem vorgegebenen Winkel die Lage der Gerade oder Ebene zu bestimmen.

Eine Gerade soll die -Ebene in einem Winkel von schneiden. Über die Gerade ist nur bekannt, dass sie durch den Punkt und in Richtung des Vektors verläuft. Stelle die Gleichung der Gerade auf, indem du den Parameter bestimmst.

Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?
Der Normalenvektor der -Ebene verläuft nur in -Richtung.
Um Gleichungen mit einer Unbekannten zu lösen, kannst du die nSolve-Funktion deines Taschenrechners nutzen.

Bestimme zuerst den Normalenvektor der Ebene. Da es sich um die -Ebene handelt, lautet der Normalenvektor .

Nun können der Normalenvektor der Ebene, der Richtungsvektor der Gerade und der vorgegebene Winkel in die Formel eingesetzt werden:

Löst man die Gleichung mithilfe des Taschenrechners, erhält man das Ergebnis: .

Somit kann im letzten Schritt die Gerade aufgestellt werden. Man erhält .


Lagebeziehung Ebene-Ebene

Mögliche Lagebeziehungen zwischen zwei Ebenen

Merke:

Zwischen zwei Ebenen gibt es drei mögliche Lagebeziehungen:

Lagebeziehung zweier Ebenen (schneidend).png

Die Ebenen schneiden sich in einer Schnittgeraden.

Lagebeziehung zweier Ebenen (parallel).png

Die Ebenen sind parallel.

Lagebeziehung zweier Ebenen (identisch).png

Die Ebenen sind identisch.

Untersuchung der Lagebeziehung von zwei Ebenen

Beide Ebenengleichungen in Parameterform

Aufgabe 11: Lückentext zur Lagebeziehung zwischen Ebene und Ebene




Merke: Lagebeziehung von zwei Ebenen in Parameterform untersuchen.
Vorgehen bei der Untersuchung der Lagebeziehung zweier Ebenen in Parameterform.jpg


Aufgabe 12: Untersuchung der Lagebeziehung von zwei Ebenen in Parameterform


a) Gegeben sind eine Ebene und eine Ebene . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.

1. Schritt: Setze die beiden Ebenengleichungen gleich.


2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf.

3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:

Mithilfe des Gaußverfahrens:

Mithilfe des Taschenrechners:

"Keine Lösung gefunden"

4. Schritt: Interpretiere die Lösung des Gleichungssystems:

In der dritten Zeile der Lösungsmatrix befindet sich ein Widerspruch, sodass das LGS keine Lösung besitzt: . Der Taschenrechner zeigt diese Interpretation direkt unterhalb der Lösungsmatrix an. Die beiden Ebenen sind somit parallel.

b) Gegeben sind eine Ebene und eine Ebene . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.


1. Schritt: Setze die beiden Ebenengleichungen gleich.

2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf.

3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:

Mithilfe des Gaußverfahrens:

Mithilfe des Taschenrechners:

linSolve

4. Schritt: Interpretiere die Lösung des Gleichungssystems:

Die Lösungsmenge beträgt:. Die beiden Ebenen schneiden sich in einer Schnittgeraden.

5. Schritt: Bestimme die Schnittgerade:

Stelle die dritte Gleichung zu um:

Setze in die zweite Gleichung ein und stelle zu um:

Setze und in die erste Gleichung ein und stelle zu um:

Setze und in die Ebenengleichung ein:

Stelle die Schnittgerade auf:

Setze die Werte für und aus der Lösungsmenge in die Ebenengleichung ein:

Stelle die Schnittgerade auf:


Aufgabe 13: Ergebnisse interpretieren


Zur Untersuchung der Lagebeziehung zweier Ebenen, wurden die Ebenengleichungen gleichgesetzt und das zugehörige Gleichungssystem aufgestellt. Betrachte die Ausgabe des Taschenrechners und interpretiere die jeweilige Situation geometrisch ohne nachzurechnen.

a) 

linSolve

                     


Das Gleichungssystem besitzt unendlich viele Lösungen. Da nur einer der Parameter frei wählbar ist, schneiden sich die beiden Ebenen in einer Schnittgeraden.

b) 

linSolve

                      "Keine Lösung gefunden"
Das Gleichungssystem besitzt keine Lösung. Die Ebenen liegen somit parallel zueinander.

c) 

linSolve

                      
Das Gleichungssystem besitzt unendlich viele Lösungen. Da zwei Parameter frei wählbar sind, sind die beiden Ebenen identisch.

⭐Ebenengleichungen in Parameter- und Koordinatenform

⭐Merke: Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform untersuchen

Seien durch eine Ebene in Parameterform und durch eine Ebene in Koordinatenform gegeben. Zur Untersuchung ihrer Lagebeziehung kannst du entsprechend des folgenden Schemas vorgehen:

Vorgehen zur Untersuchung der Lagebeziehung von zwei Ebenen.jpg


⭐Aufgabe 14: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform


a) Gegeben sind eine Ebene und eine Ebene . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.


1. Schritt: Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen:

Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors.

Es muss gelten, dass und .


2.Schritt: Interpretiere die Lösung der Skalarprodukte:

Da beide Skalarprodukte der jeweiligen Vektoren sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.


3. Schritt: Überprüfe die Lagebeziehung mithilfe der Punktprobe:

Verwende für die Punktprobe den Aufpunkt der Ebene .

Setze den Aufpunkt der Ebene in die Ebenengleichung der Ebene ein.


4. Schritt: Interpretiere die Lösung der Punktprobe:

Da der Aufpunkt die Koordinatengleichung von erfüllt, liegt der Aufpunkt in . Da wir bereits wissen, dass die Ebenen entweder parallel oder identisch sind, haben wir damit gezeigt, dass und identisch sind.


b) Gegeben sind eine Ebene und eine Ebene . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.


1. Schritt: Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen:

Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors.

Es muss gelten, dass und .


2.Schritt: Interpretiere die Lösung der Skalarprodukte:

Da das Skalarprodukt des ersten Richtungsvektors bereits ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden.

3. Schritt: Bestimme die Schnittgerade:

Schreibe mithilfe der Ebenengleichung die Gleichungen für die einzelnen Koordinaten auf.
Setze die Werte für und in die Ebenengleichung ein.
Setze in die Ebenengleichung ein, um anschließend die Geradengleichung aufstellen zu können.

Durch Umformen der Ebenengleichung erhält man:

,,

Einsetzen der Werte in die Ebenengleichung ergibt:

Einsetzen von in ergibt:

Nun kannst du die Geradengleichung aufstellen:


⭐Aufgabe 15: Lagebeziehungen untersuchen.


Untersuche die Lagebeziehung der jeweiligen Ebenen. Falls sich die Ebenen in einer Schnittgerade schneiden, brauchst du diese nicht zu berechnen.


a)

Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen.

Da das Skalarprodukt des ersten Richtungsvektors bereits ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden.

b)

Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen.

Da beide Skalarprodukte der jeweiligen Vektoren sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.

Punktprobe:

Da die Koordinatengleichung nicht erfüllt wird, liegen die Ebenen parallel zueinander.

c)

Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen.

Da beide Skalarprodukte der jeweiligen Vektoren sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.

Punktprobe:

Da die Koordinatengleichung von erfüllt wird, liegt in und die Ebenen sind identisch.

⭐Beide Ebenengleichungen in Koordinatenform

⭐Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform

Seien durch und zwei Ebenen in Koordinatenform gegeben. Zur Untersuchung ihrer Lagebeziehung kannst du entsprechend des folgenden Schemas vorgehen:

Lagebeziehung von Ebenen in Koordinatenform.jpg


⭐Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform


Gegeben sind eine Ebene und eine Ebene . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.

1. Schritt: Prüfe, ob der Normalenvektor der Ebene ein Vielfaches des Normalenvektors der Ebene ist.

Bei der Betrachtung der Normalenvektoren und fällt direkt auf, dass die beiden Vektoren keine Vielfachen voneinander sind. Man kann also direkt schließen, dass sich die beiden Ebenen in einer Schnittgeraden schneiden. Ein formaler Nachweis würde wie folgt aussehen:

Da das LGS nicht lösbar ist, sind die Vektoren keine Vielfachen voneinander und die Ebenen schneiden sich in einer Schnittgeraden.

2. Schritt: Bestimme die Schnittgerade.

Stelle mit den beiden Ebenengleichungen ein LGS auf und löse es mithilfe des Gauß-Algorithmus oder dem Taschenrechner.

Mithilfe des Gaußverfahrens:

Setze und bestimme und .

Stelle die Geradengleichung auf.

Mithilfe des Taschenrechners:

linSolve

                      

Stelle mithilfe der Werte aus der Lösungsmenge die Geradengleichung auf.


⭐Aufgabe 16: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform

Gegeben ist eine Ebene . Untersuche die Lagebeziehung zwischen dieser und den dir angezeigten Ebenen. Ziehe die Ebenen in das entsprechende Feld.



Um die Lagebeziehung von zwei Ebenen in Koordinatenform zu bestimmen, benötigst du keinen Taschenrechner. Schaue dir die beiden Gleichungen gut an.
Vergleiche die Gleichungen der zwei Ebenen miteinander. Vergleiche dabei zunächst die Normalenvektoren der Ebenen – also die linken Seiten der Gleichungen – miteinander und überprüfe, ob sie Vielfache voneinander sind. Falls das zutrifft, vergleiche auch noch die beiden rechte Seiten der Gleichungen miteinander.

Die Ebenen schneiden sich, wenn die beiden Gleichungen keine Vielfachen voneinander sind.

Die Ebenen sind parallel, wenn die Normalenvektoren identisch oder Vielfache voneinander sind, aber das LGS keine Lösung besitzt.

Die Ebenen sind identisch, wenn die Normalenvektoren identisch oder Vielfache voneinander sind und das LGS somit unendlich viele Lösungen hat.


⭐Aufgabe 17: Schnitt von zwei Zeltflächen


Die beiden Seitenflächen eines Zeltes liegen in den Ebenen und . Der Erdboden wird durch die -Ebene aufgespannt.

Skizze- Schnittgerade zweier Zeltwände.png

In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem cm entspricht?

Die obere Zeltkante entspricht der Schnittgeraden der beiden Ebenen.
Die Höhe der Zeltkante kannst du mithilfe des Stützvektors der Schnittgeraden ermitteln.

Die Zeltkante entspricht der Schnittgeraden der beiden Ebenen. Um die Höhe zu bestimmen, benötigt man also den Stützvektor der Geradengleichung der Zeltkante.

Da die Ebenen in Parameterform gegeben sind, setzen wir die Gleichungen zunächst gleich und lösen dann das entsprechende LGS:

und

Einsetzen von in ergibt:

Die Schnittgerade der beiden Ebenen lautet demnach:

Durch den Richtungsvektor der Geraden wird deutlich, dass sich die Schnittgerade parallel zur -Ebene befindet und somit überall den gleichen Abstand zum Boden hat. Da die Schnittgerade der oberen Zeltkante entspricht, lässt sich aus dem Stützvektor der Geraden die Höhe ablesen. Die Höhe kann mithilfe der -Koordinate des Vektors bestimmt werden.

Die obere Zeltkante befindet sich also in m Höhe.

⭐Berechnung des Winkels zwischen Ebene und Ebene

⭐ Merke: Berechnung des Winkel zwischen zwei Ebenen

Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Dazu kannst du die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Somit kann das Berechnen des Schnittwinkels zwischen zwei Ebenen auf das Berechnen des Winkels zwischen zwei Vektoren zurückgeführt werden.

Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in das Kapitel Ebenen im Raum.


⭐ Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen


Winkel zwischen zwei Ebenen

Seien und zwei sich schneidende Ebenen mit den Normalenvektoren und . Der Schnittwinkel zwischen und kann mit folgender Formel berechnet werden: .

Ist nach dem Schnittwinkel gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Mit der obigen Formel erhält man deshalb für immer Werte zwischen und .


⭐Beispiel: Winkel berechnen zwischen zwei Ebenen


Gegeben sind zwei Ebenen und mit und . Berechne den Schnittpunkt zwischen den Ebenen.

1. Schritt: Bestimmte die Normalenvektoren von und .

Der Normalenvektor von ist . Der Normalenvektor von lautet .

2. Schritt: Einsetzen der Normalenvektoren in die Formel.

3. Schritt: Auflösen der Gleichung.

Der Winkel zwischen den Ebenen und beträgt ca. .


⭐ Aufgabe 18: Schnittwinkel zwischen Ebenen


Sei eine Ebene mit , eine Ebene mit . und eine Ebene mit .

Berechne den Winkel zwischen

a) und

Bei der Ebene handelt es sich um die -Ebene. Der Normalenvektor ist also . Der Normalenvektor der Ebene kann abgelesen werden: .

Einsetzen in die Formel liefert:

Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:

Der Winkel zwischen den Ebenen und beträgt ca. .

b) und

Die Normalenvektor der Ebenen und können abgelesen werden als und

Einsetzen in die Formel liefert:

.

Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:

Der Winkel zwischen den Ebenen und beträgt ca. .

c) und .

Bei der Ebene handelt es sich um die -Ebene. Der Normalenvektor ist also . Der Normalenvektor der Ebene kann abgelesen werden: .

Einsetzen in die Formel liefert:

Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:

Der Winkel zwischen den Ebenen und beträgt ca. .


⭐ Aufgabe 19: Ebenen gesucht


Der Winkel zwischen den beiden Vektoren und beträgt .

Gib die Gleichungen zweier Ebenen und an, die sich in einem Winkel von schneiden.

Der Winkel zwischen zwei Ebenen entspricht dem Winkel zwischen ihren Normalenvektoren. Da der Winkel zwischen den beiden angebenen Vektoren und genau dem Winkel entspricht, den die Ebenen einschließen sollen, können sie als Normalenvektoren der Ebenen verwendet werden. Die Punkte, durch die die Ebenen laufen, können frei gewählt werden.

Eine mögliche Lösung für die Ebenen lautet daher:

und .


⭐ Aufgabe 20: Bank am Wanderweg


An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene und die Rückenlehne durch die Ebene beschrieben werden kann.

a) Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen und liegen. Überprüfe, ob dies auf die neue Bank zutrifft.

Mache dir eine Skizze. Überlege genau, welchen Winkel du berechnen musst.
Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank

Als Normalenvektor der Ebene erhält man und als Normalenvektor der Ebene erhält man .

Einsetzen in die Formel liefert:

Umstellen der Formel ergibt:

Wie in der Abbildung zu sehen wurde der Winkel berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel beschrieben. erhält man, indem man berechnet: . Mit einem Wert von liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel.

b)

Skizze: Bänke am Wanderweg

Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche kann durch die selbe Ebene beschrieben werden, wie die Sitzfläche der anderen Bank (). Die Rückenlehne entspricht der Ebene Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen.

Skizze: Winkel zwischen den beiden Bänken am Wanderweg
Gesucht ist der Winkel zwischen der Ebene und der Ebene . Nutze zur Berechnung die Normalenvektoren der Ebenen.

Es soll der Winkel zwischen den beiden Rückenlehnen und berechnet werden.

Die Normalenvektoren der Ebenen lauten und .

Einsetzen in die Formel liefert:

Umstellen der Formel ergibt: . Der Winkel zwischen den beiden Rückenlehnen beträgt .