Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(12 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{Box |1=Info |2= | {{Box |1=Info |2= | ||
In diesem Kapitel kannst du etwas zum Thema Optimierungsprobleme lernen. | In diesem Kapitel kannst du etwas zum Thema Optimierungsprobleme lernen. | ||
In diesem Kapitel erklären wir dir zunächst, was Optimierungsprobleme sind. Dabei werden wir wichtige Begriffe wiederholen. | |||
Anschließend kannst du selbstständig Aufgaben bearbeiten. | |||
In Aufgaben, die ''<span style="color: #F19E4F">orange</span>'' gefärbt sind, kannst du '' | Bei den Aufgaben unterscheiden wir folgende Typen: | ||
* In Aufgaben, die '''<span style="color: #F19E4F">orange</span>''' gefärbt sind, kannst du '''grundlegende Kompetenzen''' wiederholen und vertiefen. | |||
Aufgaben in ''<span style="color: #5E43A5">blauer</span>'' Farbe sind ''Aufgaben mittlerer Schwierigkeit''. | * Aufgaben in '''<span style="color: #5E43A5">blauer</span>''' Farbe sind '''Aufgaben mittlerer Schwierigkeit'''. | ||
* Und Aufgaben mit '''<span style="color: #89C64A">grünem</span>''' Streifen sind '''Knobelaufgaben'''. | |||
Und Aufgaben mit ''<span style="color: #89C64A"> | * Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht. | ||
Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht | |||
Viel Erfolg! | Viel Erfolg! | ||
|3=Kurzinfo}} | |||
|3=Kurzinfo}} | |||
==Einführung: Optimierungsprobleme== | ==Einführung: Optimierungsprobleme== | ||
Zeile 36: | Zeile 31: | ||
Der '''optimale''' Wert bedeutet mathematisch, den Extremwert einer Funktion zu bestimmen. Du musst also das Optimierungsproblem als Funktion ausdrücken und dabei die anderen Größen miteinbeziehen. Mit dieser Funktion kannst du dann den optimalen Wert bestimmen. | Der '''optimale''' Wert bedeutet mathematisch, den Extremwert einer Funktion zu bestimmen. Du musst also das Optimierungsproblem als Funktion ausdrücken und dabei die anderen Größen miteinbeziehen. Mit dieser Funktion kannst du dann den optimalen Wert bestimmen. | ||
| | | Merksatz | ||
}} | }} | ||
Zeile 47: | Zeile 42: | ||
'''a)''' Für welche Länge und für weiche Breite wird das Fußballfeld im Inneren des Sportplatzes maximal? | '''a)''' Für welche Länge und für weiche Breite wird das Fußballfeld im Inneren des Sportplatzes maximal? | ||
{{Lösung versteckt | {{Lösung versteckt | ||
|2= Tipps | |2= Tipps | ||
|1= | |1= | ||
Zeile 118: | Zeile 110: | ||
|3= Tipp 5 verbergen}} | |3= Tipp 5 verbergen}} | ||
|3= Tipps | |3= Tipps verbergen | ||
}} | }} | ||
{{Lösung versteckt |2=Lösung |1= | |||
Die Formel zum Flächeninhalt ist <math>A=a \cdot b</math> und der Umfang lässt sich durch <math>U=2 \cdot a+\pi\cdot b</math> berechnen. Stelle die Formel für den Umfang nun nach <math> a </math> um. | |||
Du erhältst: <math>a=\frac{400-\pi \cdot b}{2}</math>. | |||
Setze nun deine Formel für <math> a </math> in die Flächeninhaltsformel ein. So erhälst du deine Zielfunktion. | |||
Deine Zielfunktion ist: | |||
<math>A(b)=\frac{400-\pi \cdot b}{2} \cdot b=\frac{-\pi \cdot b^2}{2}+200 \cdot b</math> | |||
Für die Zielfunktion kann <math>b</math> nur zwischen <math>0</math> und <math>200</math> liegen, also <math>0<b<200</math>. | |||
Gesucht ist nun das '''Maximum'''. Um dieses zu bestimmen, bilde zunächst die Ableitung. | |||
# <math>A'(b)= -\pi \cdot b + 200 \cdot b </math> | |||
# <math> A''(b) = - \pi</math> | |||
Prüfe nun die notwendige und hinreichende Bedingung. | |||
Mit der notwendigen Bedingung <math> A'(b)=0</math> erhälst du dann <math> b=\frac{200}{pi} = 63,66 </math>. | |||
Mit der hinreichenden Bedingung folgt <math> A''(b)=-\pi \neq 0 </math>, somit erfüllt <math> b </math> alle Bedingungen. | |||
Berechne nun <math> a </math>, indem <math> b=\frac{200}{pi} </math> in <math>a=\frac{400-\pi \cdot b}{2}</math> eingesetzt wird. | |||
<math>a=\frac{400-\pi \cdot \frac{200}{pi}}{2} = 100 </math> | |||
Der Flächeninhalt des Fussballfeldes wird also für eine Breite von <math>63,66</math>m und eine Höhe von <math>100</math>m maximal. | |||
|3= Lösung verbergen}} | |||
'''b)''' Wie groß ist das Fußballfeld? | |||
{{Lösung versteckt | {{Lösung versteckt | ||
|2= Tipp | |2= Tipp | ||
|1= | |1= | ||
Berechne nun durch Einsetzen von <math>a</math> und <math>b</math> den Flächeninhalt <math>A</math>: | Berechne nun durch Einsetzen von <math>a</math> und <math>b</math> den Flächeninhalt <math>A</math>: | ||
|3= Tipp verbergen | |||
}} | |||
{{Lösung versteckt |2= Lösung |1= | {{Lösung versteckt |2= Lösung |1= | ||
Zeile 131: | Zeile 152: | ||
Der Flächeninhalt wird also auf <math> 6366 </math>m maximiert. | Der Flächeninhalt wird also auf <math> 6366 </math>m maximiert. | ||
|3= Lösung verbergen}} | |3= Lösung verbergen}} | ||
| | |||
}} | | Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
Zeile 144: | Zeile 165: | ||
{{Lösung versteckt | 1= | {{Lösung versteckt | 1= | ||
Multipliziere Höhe, Breite und Länge, also <math>a \cdot a \cdot b</math>, um das Volumen eines Quaders (Paketes) zu ermitteln. | |||
| 2=Tipp zum Aufstellen der Zielfunktion | 3=Tipp verbergen}} | | 2=Tipp zum Aufstellen der Zielfunktion | 3=Tipp verbergen}} | ||
Zeile 150: | Zeile 171: | ||
Nutze die zweite Bedingung, stelle eine Gleichung auf und stelle diese nach <math>b</math> um. | Nutze die zweite Bedingung, stelle eine Gleichung auf und stelle diese nach <math>b</math> um. | ||
Zweite Bedingung: Länge (<math>b</math>) plus Umfang '''einer''' quadratischen Seitenfläche soll <math> 360</math>cm groß sein. Den Umfang einer quadratischen Seitenfläche erhältst du, indem du <math>4 | Zweite Bedingung: Länge (<math>b</math>) plus Umfang '''einer''' quadratischen Seitenfläche soll <math> 360</math>cm groß sein. Den Umfang einer quadratischen Seitenfläche erhältst du, indem du <math>4 \cdot a</math> rechnest. | ||
| 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}} | | 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}} | ||
Zeile 156: | Zeile 177: | ||
Die Definitionsmenge für die Zielfunktion <math>V(a)</math> ergibt sich aus der Bedingung für die Länge (<math>b</math>). | Die Definitionsmenge für die Zielfunktion <math>V(a)</math> ergibt sich aus der Bedingung für die Länge (<math>b</math>). | ||
Die Länge muss zum einen größer gleich <math>0</math> und zum anderen kleiner gleich <math>200</math> sein. Also gelten die folgenden zwei Ungleichungen, die du einfach nach a auflösen kannst. | Die Länge muss zum einen größer gleich <math>0</math> und zum anderen kleiner gleich <math>200</math> sein. Also gelten die folgenden zwei Ungleichungen, die du einfach nach a auflösen kannst. | ||
<math>0</math><math>\leq</math><math>360-4 | <math>0</math><math>\leq</math><math>360-4 \cdot a</math> und | ||
<math>200</math><math>\geq</math><math>360-4 | <math>200</math><math>\geq</math><math>360-4 \cdot a</math>. | ||
| 2= Tipp zur Bestimmung der Definitionsmenge | 3= Tipp verbergen }} | | 2= Tipp zur Bestimmung der Definitionsmenge | 3= Tipp verbergen }} | ||
Zeile 164: | Zeile 185: | ||
{{Lösung versteckt | 1= | {{Lösung versteckt | 1= | ||
Um das maximale Volumen angeben zu können, nutze die in Aufgabenteil a ermittelten Abmessungen für die Höhe, Breite und Länge. Das Volumen errechnest du, indem du Höhe | Um das maximale Volumen angeben zu können, nutze die in Aufgabenteil a) ermittelten Abmessungen für die Höhe, Breite und Länge. Das Volumen errechnest du, indem du Höhe mal Breite mal Länge rechnest. | 2= Tipp zur Errechnung des Volumens | 3= Tipp verbergen }} | ||
{{Lösung versteckt | 1= | {{Lösung versteckt | 1= | ||
'''Zielfunktion aufstellen''': Um das Volumen des Paktes zu errechnen, verwenden wir die folgende Funktion, die von den Variablen <math>a</math> und <math>b</math> | '''Zielfunktion aufstellen''': Um das Volumen des Paktes zu errechnen, verwenden wir die folgende Funktion, die von den Variablen <math>a</math> und <math>b</math> abhängig ist: | ||
<math>V(a,b) = a | <math>V(a,b) = a \cdot a \cdot b = a^2 \cdot b</math>. | ||
'''Nebenbedingung aufstellen''': Durch die zweite Bedingung können wir die folgende Gleichung aufstellen. | '''Nebenbedingung aufstellen''': Durch die zweite Bedingung können wir die folgende Gleichung aufstellen. | ||
<math> b + 4 | <math> b + 4 \cdot a = 360</math>. | ||
Die Gleichung stellen wir nach <math>b</math> um und erhalten: | Die Gleichung stellen wir nach <math>b</math> um und erhalten: | ||
<math>b = 360 - 4 | <math>b = 360 - 4 \cdot a</math>. | ||
Nun können wir <math>b</math> in die Zielfunktion <math>V(a,b)</math> einsetzen, welche dann | Nun können wir <math>b</math> in die Zielfunktion <math>V(a,b)</math> einsetzen, welche dann nur noch von der Variable <math>a</math> abhängt. Wir schreiben dann für die Funktion <math>V(a)</math> und erhalten <math>V(a) = -4 \cdot a^3 + 360 a^2</math>. | ||
'''Definitionsmenge angeben''': Wir wollen nun eine Definitionsmenge für die Funktion <math>V(a)</math> angeben. Diese erhalten wir, indem wir uns die Bedingung für die Länge (<math>b</math>) anschauen. | '''Definitionsmenge angeben''': Wir wollen nun eine Definitionsmenge für die Funktion <math>V(a)</math> angeben. Diese erhalten wir, indem wir uns die Bedingung für die Länge (<math>b</math>) anschauen. | ||
Offensichtlich muss die Länge größer gleich <math>0</math> sein. Es gilt also: | Offensichtlich muss die Länge größer gleich <math>0</math> sein. Es gilt also: | ||
<math>360 - 4 | <math>360 - 4 \cdot a \geq 0</math>. | ||
Durch das Umstellen nach <math>a</math> folgt:<math>a \leq 90</math>. | Durch das Umstellen nach <math>a</math> folgt:<math>a \leq 90</math>. | ||
Außerdem muss die Länger kleiner gleich <math>200</math>cm sein. Es gilt also: | Außerdem muss die Länger kleiner gleich <math>200</math>cm sein. Es gilt also: | ||
<math>360 - 4 \cdot a \leq 200</math>. | |||
Durch das Umstellen nach <math>a</math> folgt: <math>a \geq 40</math>. | Durch das Umstellen nach <math>a</math> folgt: <math>a \geq 40</math>. | ||
Insgesamt ergibt das also <math>40 \leq a \leq 90</math>. | Insgesamt ergibt das also <math>40 \leq a \leq 90</math>. | ||
Zeile 194: | Zeile 215: | ||
Notw. Bedingung: <math>V'(a) = 0 </math>. | Notw. Bedingung: <math>V'(a) = 0 </math>. | ||
<math> -12a^2 + 720a = 0 </math> (Klammere das <math>a</math> aus und wende den Satz vom Nullprodukt an. Alternativ kannst du auch die pq-Formel anwenden) | <math> -12a^2 + 720a = 0 </math> (Klammere das <math>a</math> aus und wende den Satz vom Nullprodukt an. Alternativ kannst du auch die pq-Formel anwenden.) | ||
<math> (-12a + 720)a = 0 </math> | <math> (-12a + 720)a = 0 </math> | ||
Zeile 203: | Zeile 224: | ||
Breite und Höhe sind also <math>60</math>cm. | Breite und Höhe sind also <math>60</math>cm. | ||
Die Länge ergibt sich durch das einsetzen von <math> a = 60</math> in <math> b = 360 - 4 | Die Länge ergibt sich durch das einsetzen von <math> a = 60</math> in <math> b = 360 - 4 \cdot a</math>. | ||
<math> b = 120</math>cm. | <math> b = 120</math>cm. | ||
'''Das Volumen bestimmen''': Wir berechnen nun das Volumen des optimalen Paketes, indem wir <math>60 | '''Das Volumen bestimmen''': Wir berechnen nun das Volumen des optimalen Paketes, indem wir <math>60 \cdot 60 \cdot 120 </math> berechnen. | ||
Das maximale Volumen beträgt also <math>432 000</math>cm³. | Das maximale Volumen beträgt also <math>432 000</math>cm³. | ||
Zeile 225: | Zeile 246: | ||
{{Lösung versteckt | 1=Beachte, dass der Radius des Stücks Papier <math>s=10</math>cm der Mantellinie <math>s</math> des Kegels entspricht. | 2=Tipp zur Erfassung des Problems | 3=Tipp verbergen}} | {{Lösung versteckt | 1=Beachte, dass der Radius des Stücks Papier <math>s=10</math>cm der Mantellinie <math>s</math> des Kegels entspricht. | 2=Tipp zur Erfassung des Problems | 3=Tipp verbergen}} | ||
{{Lösung versteckt | 1= Das Volumen der Pommestüte errechnet man mit der Formel <math> V(r,h)=\frac{1}{3}\pi | {{Lösung versteckt | 1= Das Volumen der Pommestüte errechnet man mit der Formel <math> V(r,h)=\frac{1}{3}\pi \cdot r^2 \cdot h </math>. | 2=Tipp zur Bestimmung des Volumens | 3=Tipp verbergen}} | ||
{{Lösung versteckt | 1= Mit Hilfe vom Satz des Pythagoras kannst du <math>s^2</math> bestimmen. Durch geeignetes Umstellen nach <math>r^2</math> erhältst du schließlich eine geeignete Nebenbedingung. | 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}} | {{Lösung versteckt | 1= Mit Hilfe vom Satz des Pythagoras kannst du <math>s^2</math> bestimmen. Durch geeignetes Umstellen nach <math>r^2</math> erhältst du schließlich eine geeignete Nebenbedingung. | 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}} | ||
Zeile 231: | Zeile 252: | ||
|1= | |1= | ||
Leon möchte aus einem kreisförmigen Stück Papier eine Pommestüte formen, in | Leon möchte aus einem kreisförmigen Stück Papier eine Pommestüte formen, in die möglichst viele Pommes hineinpassen. Zu optimieren ist also das Volumen <math> V(r,h)=\frac{1}{3} \cdot\pi\cdot r^2 h </math> der Pommestüte. | ||
Rollt Leon das Stück Papier nicht, so | Rollt Leon das Stück Papier nicht, so ist das Volumen <math>V = 0</math>. Rollt Leon das Stück Papier ganz zusammen, so ist <math>s = h = 10</math>. | ||
Gegeben ist die Mantellinie mit <math> s=10 </math> der Pommestüte. Außerdem ist das Volumen der Pommestüte von den Variablen <math> r </math>(Radius) und <math> h </math>(Höhe) abhängig. Mit dem Satz des Pythagoras ergibt sich <math> r^2 + h^2 = 10^2 </math>. Stelle diese Gleichung nun nach <math> r </math> um und erhalte <math> r^2 = 100 - h^2 </math>. | Gegeben ist die Mantellinie mit <math> s=10 </math> der Pommestüte. Außerdem ist das Volumen der Pommestüte von den Variablen <math> r </math>(Radius) und <math> h </math>(Höhe) abhängig. Mit dem Satz des Pythagoras ergibt sich <math> r^2 + h^2 = 10^2 </math>. Stelle diese Gleichung nun nach <math> r </math> um und erhalte <math> r^2 = 100 - h^2 </math>. | ||
Zeile 263: | Zeile 284: | ||
}} | }} | ||
{{Box | Aufgabe 4: Globale und lokale Extremstellen | | {{Box | Aufgabe 4: Globale und lokale Extremstellen | | ||
Um diese Aufgabe vollständig zu sehen, aktiviere den Vollbildmodus rechts oben. | |||
{{LearningApp|width:50%|height:300px|app=pa2vx65qa20}} | {{LearningApp|width:50%|height:300px|app=pa2vx65qa20}} | ||
| Arbeitsmethode | Farbe={{Farbe|orange}} }} | | Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
Zeile 281: | Zeile 303: | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Den Flächeninhalt von einem Rechteck bestimmst du, indem du die Breite mit der Länge multiplizierst. Den Flächeninhalt geben wir durch <math>A(x,y)</math> an. Es gilt also <math> A(x,y) = x | Den Flächeninhalt von einem Rechteck bestimmst du, indem du die Breite mit der Länge multiplizierst. Den Flächeninhalt geben wir durch <math>A(x,y)</math> an. Es gilt also <math> A(x,y) = x \cdot y </math> | Tipp zur Berechnung des Flächeninhaltes | Tipp verbergen }} | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Als Nebenbedingung eignet sich die Funktion <math>g(x)=(x-3)^2 + 2{,}5</math>. | Als Nebenbedingung eignet sich die Funktion <math>g(x)=(x-3)^2 + 2{,}5</math>. | ||
Das liegt daran, dass ein Eckpunkt im Koordinatenursprung liegt. Somit wird die Länge des Rechteckes durch den Funktionswert an der Stelle <math>x</math> bestimmt. | Das liegt daran, dass ein Eckpunkt im Koordinatenursprung liegt. Somit wird die Länge des Rechteckes durch den Funktionswert an der Stelle <math>x</math> bestimmt. | ||
Die Nebenbedingung <math>g(x)</math> wird in <math>A(x,y)=x | Die Nebenbedingung <math>g(x)</math> wird in <math>A(x,y)=x \cdot y</math> für <math>y</math> eingesetzt. | Tipp für eine geeignete Nebenbedingung | Tipp verbergen }} | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
1= | 1= | ||
Mit <math>x,y</math> in cm berechnen wir den Flächeninhalt mit der Funktion <math>A(x,y)=x | Mit <math>x,y</math> in cm berechnen wir den Flächeninhalt mit der Funktion <math>A(x,y)=x \cdot y</math>. | ||
Die Nebenbedingung ist die angegebene Funktion <math>g(x)=(x-3)^2+2{,}5</math>. Da ein Eckpunkt im Koordinatenursprung liegt, wird die Länge des Rechteckes durch den Funktionswert an der Stelle <math>x</math> angegeben. | Die Nebenbedingung ist die angegebene Funktion <math>g(x)=(x-3)^2+2{,}5</math>. Da ein Eckpunkt im Koordinatenursprung liegt, wird die Länge des Rechteckes durch den Funktionswert an der Stelle <math>x</math> angegeben. | ||
Setzt man nun die Nebenbedingung in die Funktion <math>A(x,y)</math> ein, so erhalten wir <math>A(x)=x^3-6x^2+ | Setzt man nun die Nebenbedingung in die Funktion <math>A(x,y)</math> ein, so erhalten wir <math>A(x)=x^3-6x^2+11{,}5x</math>. Die Funktion heißt nun <math>A(x)</math>, da sie nur noch von der Unbekannte <math>x</math> abhängt. | ||
Nun lässt sich mit Hilfe der notwendigen Bedingung <math>A'(x)=0</math> und der hinreichenden Bedingung für Hochpunkte <math>A''(x) < 0 </math> die Stelle des lokalen Hochpunktes bestimmen. Anschließend setzen wir <math>x</math> in die Ausgangsfunktion <math>A(x)</math> ein und erhalten nun den lokalen Hochpunkt <math>HP(1{,}59|7{,}14)</math>. | Nun lässt sich mit Hilfe der notwendigen Bedingung <math>A'(x)=0</math> und der hinreichenden Bedingung für Hochpunkte <math>A''(x) < 0 </math> die Stelle des lokalen Hochpunktes bestimmen. Anschließend setzen wir <math>x</math> in die Ausgangsfunktion <math>A(x)</math> ein und erhalten nun den lokalen Hochpunkt <math>HP(1{,}59|7{,}14)</math>. | ||
Zeile 320: | Zeile 342: | ||
{{Box | {{Box | ||
|Aufgabe 6: | |Aufgabe 6: Extrema bei Funktionenscharen ⭐ | ||
| | | | ||
Gegeben ist die Funktionenschar <math>f_t(x)=x^2-4x-t^2-2t</math>. | Gegeben ist die Funktionenschar <math>f_t(x)=x^2-4x-t^2-2t</math>. | ||
Zeile 353: | Zeile 375: | ||
Setze nun <math>x=2</math> in <math>f(x)</math> ein, um den Funktionswert am Minimum zu bestimmen: | Setze nun <math>x=2</math> in <math>f(x)</math> ein, um den Funktionswert am Minimum zu bestimmen: | ||
<math>f(2)=2^2-4 | <math>f(2)=2^2-4 \cdot 2-t^2-2t</math> | ||
<math><=> f(2)=4-8-t^2-2t</math> | <math><=> f(2)=4-8-t^2-2t</math> | ||
Zeile 403: | Zeile 425: | ||
Setze nun <math>x=2</math> in <math>f(x)</math> ein, um den Funktionswert am Minimum zu bestimmen: | Setze nun <math>x=2</math> in <math>f(x)</math> ein, um den Funktionswert am Minimum zu bestimmen: | ||
<math>f(2)=2^2-4 | <math>f(2)=2^2-4 \cdot 2-t^2-2t</math> | ||
<math><=> f(2)=4-8-t^2-2t</math> | <math><=> f(2)=4-8-t^2-2t</math> |
Aktuelle Version vom 12. Juni 2020, 22:47 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Optimierungsproblemen
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen