Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Umgekehrt proportionale Zuordnungen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(8 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]]
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}


Zeile 37: Zeile 38:
Die '''Rechenvorschrift''' lautet  Zeit = 30 : Anzahl der Helfer, also y = 30 : x|3=Arbeitsmethode}}
Die '''Rechenvorschrift''' lautet  Zeit = 30 : Anzahl der Helfer, also y = 30 : x|3=Arbeitsmethode}}


[[Datei:Umgekehrt proportionale Zuordnung Darstellungsmöglichkeiten.png|rahmenlos|805x805px]]
[[Datei:Darstellungsformen antiproportionaler Zuordnungen ergänzt.jpg|rahmenlos|800x800px]]
 




Zeile 51: Zeile 53:




{{Box|Übung 14: Umgekehrt proportionale Zuordnungen erkennen|Löse Buch S.33 Nr. 1, 2, 3, 4, 5 und 6.|Üben}}
{{Box|Übung 14: Umgekehrt proportionale Zuordnungen erkennen|Löse die Aufgaben aus dem Buch. Gib die Zuordnung als Pfeilbild an und überlege, warum die Zuordnung antiproportional ist.
* S. 33, Nr. 1
* S. 33, Nr. 2
* S. 33, Nr. 3
* S. 33, Nr. 4
* S. 33, Nr. 5
* S. 33, Nr. 6|Üben}}


{{Box|Übung 15: Umgekehrt proportionale Zuordnungen erkennen|Löse Buch S. 34 Nr. 12 mithilfe der Produktgleichheit.|Üben}}
{{Box|Übung 15: Umgekehrt proportionale Zuordnungen erkennen|Löse die Aufgabe aus dem Buch mithilfe der Produktgleichheit.
* S. 34, Nr. 12|Üben}}




Zeile 67: Zeile 76:
{{#ev:youtube|izN8-f70q2s|800|center}}
{{#ev:youtube|izN8-f70q2s|800|center}}


{{Box|Dreisatz bei umgekehrt proportionalen Zuordnungen|Fülle die Lücken in der nachfolgenden App.|Üben}}
{{Box|Übung 16: Dreisatz bei umgekehrt proportionalen Zuordnungen|Fülle die Lücken in der nachfolgenden App.|Üben}}
{{LearningApp|app=pcqkf8tua20|width=100%|height=1000px}}
{{LearningApp|app=pav25z63t23|width=100%|height=400px}}
 
{{Box|Übung 17: Dreisatz bei umgekehrt proportionalen Zuordnungen|Löse die Augaben aus dem Buch. Gib die Zuordnung an und prüfe, ob diese umgekehrt proportional ist. Rechne dann mit dem Dreisatz (Tabelle).
* S. 36, Nr. 2
* S. 36, Nr. 9
* S. 37, Nr. 10
* S. 37, Nr. 11
* S. 37, Nr. 15  |Üben}}


{{Box|Übung 16: Dreisatz bei umgekehrt proportionalen Zuordnungen|Löse Buch S. 36 Nr. 2 und 9 und S. 37 Nr. 10, 11 und 15 in deinem Heft. Gib die Zuordnung an und prüfe, ob diese umgekehrt proportional ist. Rechne dann mit dem Dreisatz (Tabelle).|Üben}}


{{Box|Übung 17: Dreisatz bei umgekehrt proportionalen Zuordnungen|Löse zur Übung die nachfolgenden Apps.|Üben}}
{{Box|Übung 18: Jetzt bist du dran - Dreisatz bei umgekehrt proportionalen Zuordnungen|Du hast nun schon viele Anwendungen für umgekehrt proportionale Zuordnungen kennen gelernt. Kennst du noch andere Anwendungen? <br>
{{LearningApp|app=pi8m2mnvk20|width=100%|height=600px}}
Überlege dir drei Aufgaben zum Dreisatz bei umgekehrt proportionalen Zuordnungen und löse diese Aufgaben. Gib den Schwierigkeitsgrad deiner Aufgaben an (* leicht, ** mittel, *** schwer) und lade sie im Gruppenorder auf IServ hoch.|Üben}}


====3.3 Vermische Übungen zu umgekehrt proportionalen Zuordnungen====
====3.3 Vermische Übungen zu umgekehrt proportionalen Zuordnungen====


<br />{{Box|Übung 18 - Vermischte Übungen|Umfangreiche Aufgaben zu proportionalen Zuordnungen findest du auf der Seite [https://mathe.aufgabenfuchs.de/zuordnung/umgekehrt-proportional.shtml '''Aufgabenfuchs: Umgekehrt proportionale Zuordnung'''], klicke dazu den Link an und bearbeite die Übungen.|Üben}}
<br />{{Box|Übung 19 - Vermischte Übungen|Umfangreiche Aufgaben zu umgekehrt proportionalen Zuordnungen findest du auf der Seite [https://mathe.aufgabenfuchs.de/zuordnung/umgekehrt-proportional.shtml '''Aufgabenfuchs: Umgekehrt proportionale Zuordnung'''], klicke dazu den Link an und bearbeite die Übungen.|Üben}}




{{Fortsetzung|weiter=4. Bunte Mischung - Übungen|weiterlink=Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Bunte Mischung}}
{{Fortsetzung|weiter=4. Bunte Mischung - Übungen|weiterlink=Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Bunte Mischung}}

Aktuelle Version vom 3. November 2024, 13:03 Uhr

Schullogo HLR.jpg

3. Umgekehrt proportionale Zuordnungen und Dreisatz

3.1 Umgekehrt proportionale Zuordnungen erkennen
Aufräumen 1.png
Aufräumen 2.png


Umgekehrt proportionale Zuordnungen

Nach dem Backen muss nun aufgeräumt werden:
Für das Aufräumen der Küche benötigt eure Mathelehrerin 30 Minuten. Natürlich muss sie nicht allein aufräumen.
a) Welche Zuordnung liegt vor?
b) Stelle sie auf verschiedene Arten dar.

c) Welche Fragen kannst du an diese Zuordnung stellen?
Die Eingabegröße ist die Anzahl der Personen, die aufräumen. Zugeordnet wird dann die Zeit, die sie für das Aufräumen benötigen. Wie kannst du den Satz beenden:"Je mehr Personen helfen, desto ...

Erinnerst du dich an die 4 Darstellungsmöglichkeiten:
1. Text/Pfeilbild
2. Wertetabelle Aufräumen Tabelle.png
3. Rechenvorschrift

4. Schaubild/Graph Aufräumen Graph.png

Mögliche Fragen könnten lauten
- Wie lange dauerte das Aufräumen, wenn 2 Personen aufräumten?

- Wie lange dauerte das Aufräumen wirklich, wenn alle zusammen, also insgesamt 10 Personen, aufräumten?


Eigenschaften umgekehrt proportionaler Zuordnungen (antiproportional)

Eine umgekehrt proportionale Zuordnung liegt vor, wenn zum Doppelten (Dreifachen,…) der Eingabegröße die Hälfte (Drittel...) der Ausgabegröße gehört.

Für jedes Wertepaar in der Wertetabelle gilt Produktgleichheit:
y·x = 1·30 = 2·15 = 3·10 = … = 30 (Minuten).

Für das Schaubild gilt: Alle Punkte einer umgekehrt proportionalen Zuordnung liegen auf einer Kurve, die Hyperbel, heißt.

Die Rechenvorschrift lautet Zeit = 30 : Anzahl der Helfer, also y = 30 : x

Darstellungsformen antiproportionaler Zuordnungen ergänzt.jpg


Zusammenfassung:


Übung 13: Umgekehrt proportionale Zuordnungen erkennen
Bearbeite die folgenden Learningapps. Welche Strategien nutzt du, um zu entscheiden, ob die Zuordnungen umgekehrt proportional sind oder nicht? Diskutiere deine Ideen mit deinem Partner.



Das nachfolgende Video erklärt noch einmal, wie du eine Wertetabelle auf umgekehrte Proportionalität prüfen kannst:



Übung 14: Umgekehrt proportionale Zuordnungen erkennen

Löse die Aufgaben aus dem Buch. Gib die Zuordnung als Pfeilbild an und überlege, warum die Zuordnung antiproportional ist.

  • S. 33, Nr. 1
  • S. 33, Nr. 2
  • S. 33, Nr. 3
  • S. 33, Nr. 4
  • S. 33, Nr. 5
  • S. 33, Nr. 6


Übung 15: Umgekehrt proportionale Zuordnungen erkennen

Löse die Aufgabe aus dem Buch mithilfe der Produktgleichheit.

  • S. 34, Nr. 12


3.2 Dreisatz bei umgekehrt proportionalen Zuordnungen
Dreisatz bei umgekehrt proportionalen Zuordnungen
Nachdem alle Kekse gegessen wurden, muss der Klassenraum gefegt werden. Wenn zwei Schüler den Klassenraum reinigen, benötigen sie 12 Minuten. Wie lange bräuchten dann 3 Schüler?

Die Zuordnung Anzahl der Schüler benötigte Zeit ist umgekehrt proportional, denn doppelt so viele Schüler benötigen nur halb so lange. Daher können wir mit drei Schritten die Zeit zum Aufräumen berechnen:
Dreisatz up schrittweises Vorgehen.png


Dreisatz bei umgekehrt proportionalen Zuordnungen

Bei einer umgekehrt proportionalen Zuordnung kann die gesuchte Größe mit dem Dreisatz (3 Schritte) berechnet werden.
Dreisatz up schrittweises Vorgehen kurz.png



Übung 16: Dreisatz bei umgekehrt proportionalen Zuordnungen
Fülle die Lücken in der nachfolgenden App.


Übung 17: Dreisatz bei umgekehrt proportionalen Zuordnungen

Löse die Augaben aus dem Buch. Gib die Zuordnung an und prüfe, ob diese umgekehrt proportional ist. Rechne dann mit dem Dreisatz (Tabelle).

  • S. 36, Nr. 2
  • S. 36, Nr. 9
  • S. 37, Nr. 10
  • S. 37, Nr. 11
  • S. 37, Nr. 15


Übung 18: Jetzt bist du dran - Dreisatz bei umgekehrt proportionalen Zuordnungen

Du hast nun schon viele Anwendungen für umgekehrt proportionale Zuordnungen kennen gelernt. Kennst du noch andere Anwendungen?

Überlege dir drei Aufgaben zum Dreisatz bei umgekehrt proportionalen Zuordnungen und löse diese Aufgaben. Gib den Schwierigkeitsgrad deiner Aufgaben an (* leicht, ** mittel, *** schwer) und lade sie im Gruppenorder auf IServ hoch.

3.3 Vermische Übungen zu umgekehrt proportionalen Zuordnungen


Übung 19 - Vermischte Übungen
Umfangreiche Aufgaben zu umgekehrt proportionalen Zuordnungen findest du auf der Seite Aufgabenfuchs: Umgekehrt proportionale Zuordnung, klicke dazu den Link an und bearbeite die Übungen.