Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Umgekehrt proportionale Zuordnungen: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 76: | Zeile 76: | ||
{{Box|Dreisatz bei umgekehrt proportionalen Zuordnungen|Fülle die Lücken in der nachfolgenden App.|Üben}} | {{Box|Dreisatz bei umgekehrt proportionalen Zuordnungen|Fülle die Lücken in der nachfolgenden App.|Üben}} | ||
{{LearningApp|app=pav25z63t23|width=100%|height= | {{LearningApp|app=pav25z63t23|width=100%|height=400px}} | ||
{{Box|Übung 16: Dreisatz bei umgekehrt proportionalen Zuordnungen|Löse die Augaben aus dem Buch. Gib die Zuordnung an und prüfe, ob diese umgekehrt proportional ist. Rechne dann mit dem Dreisatz (Tabelle). | {{Box|Übung 16: Dreisatz bei umgekehrt proportionalen Zuordnungen|Löse die Augaben aus dem Buch. Gib die Zuordnung an und prüfe, ob diese umgekehrt proportional ist. Rechne dann mit dem Dreisatz (Tabelle). |
Version vom 30. August 2023, 15:31 Uhr
1. Zuordnungen
2. Proportionale Zuordnungen und Dreisatz
3. Umgekehrt proportionale Zuordnungen und Dreisatz
4. Bunte Mischung - Übungen
5. Checkliste
2. Proportionale Zuordnungen und Dreisatz
3. Umgekehrt proportionale Zuordnungen und Dreisatz
4. Bunte Mischung - Übungen
5. Checkliste
3. Umgekehrt proportionale Zuordnungen und Dreisatz
3.1 Umgekehrt proportionale Zuordnungen erkennen
Die Eingabegröße ist die Anzahl der Personen, die aufräumen. Zugeordnet wird dann die Zeit, die sie für das Aufräumen benötigen. Wie kannst du den Satz beenden:"Je mehr Personen helfen, desto ...
Erinnerst du dich an die 4 Darstellungsmöglichkeiten:
1. Text/Pfeilbild
2. Wertetabelle
3. Rechenvorschrift
Mögliche Fragen könnten lauten
- Wie lange dauerte das Aufräumen, wenn 2 Personen aufräumten?
Zusammenfassung:
Das nachfolgende Video erklärt noch einmal, wie du eine Wertetabelle auf umgekehrte Proportionalität prüfen kannst:
3.2 Dreisatz bei umgekehrt proportionalen Zuordnungen
Die Zuordnung Anzahl der Schüler benötigte Zeit ist umgekehrt proportional, denn doppelt so viele Schüler benötigen nur halb so lange. Daher können wir mit drei Schritten die Zeit zum Aufräumen berechnen:
3.3 Vermische Übungen zu umgekehrt proportionalen Zuordnungen