Benutzer:Buss-Haskert/Terme (mit Klammern)/Summen multiplizieren: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 99: | Zeile 99: | ||
{{Lösung versteckt|1=Schreibweise:<br> | {{Lösung versteckt|1=Schreibweise:<br> | ||
a) (n+2)(n+1) = n² + n·1 + n·2 + 2·1 | a) (n+2)(n+1) = n² + n·1 + n·2 + 2·1 | ||
= n² + 3n + 2|2=Tipp zu Nr. 2|3=Verbergen}} | = n² + 3n + 2|2=Tipp zu Nr. 2|3=Verbergen}} | ||
{{Lösung versteckt|1=Vorsicht mit den Vorzeichen:<br> | {{Lösung versteckt|1=Vorsicht mit den Vorzeichen:<br> | ||
e) (x-4)(-1-y) = x·(-1) + x·(-y) + (-4)·(-1) + (-4)·(-y)<br> | e) (x-4)(-1-y) = x·(-1) + x·(-y) + (-4)·(-1) + (-4)·(-y)<br> | ||
=-x - xy + 4 + 4y<br> | = -x - xy + 4 + 4y<br> | ||
= -x - xy + 4y + 4|2=Tipp zu Nr. 3e|3=Verbergen}} | = -x - xy + 4y + 4|2=Tipp zu Nr. 3e|3=Verbergen}} | ||
{{Lösung versteckt|1= Erinnerung: Multiplikation mit Dezimalbrüchen<br> | |||
12 · 0,5 = 6, denn 12·5 = 60 (mit 1 Nachkommastelle bei 0,<u>5</u> ist dann 12·0,5 =6,<u>0</u>|2=Tipp zu Nr. 3f|3=Verbergen}} | |||
{{Box|Übung 15|Der Flächeninhalt der blauen Fläche lässt sich auf verschiedene Arten berechnen.<br>[[Datei:Summen multiplizieren 5.png|rahmenlos]].<br> Skizziere die Figur in dein Heft.<br> | {{Box|Übung 15|Der Flächeninhalt der blauen Fläche lässt sich auf verschiedene Arten berechnen.<br>[[Datei:Summen multiplizieren 5.png|rahmenlos]].<br> Skizziere die Figur in dein Heft.<br> |
Version vom 8. Juli 2022, 12:16 Uhr
2. Summen multiplizieren
3. Binomische Formeln und 4. Faktorisieren mit binomische Formeln
5. Zusammenfassung
6. Checkliste
2. Summen multiplizieren
Berechne den Flächeninhalt der einzelnen Flächen. Dies sind jeweils Rechtecke, also rechnest du A = Länge∙Breite.
Berechne den Flächeninhalt der gesamten Figur. Dies ist ein Rechteck, rechne also A = Länge∙Breite. Die Länge beträgt (8+1)=9 und die Breite (1,5+4)=5,5.
Die Fläche des Rechtecks lässt sich auf zwei Arten berechnen:
1. als Summe der Einzelflächen und
2. als Produkt.
Notiere deine Ideen unter die passende Zeichnung in deinem Heft.
Vergleiche deine Ideen mit denen des nachfolgenden Videos. Ergänze bzw. berichtige deine Ideen.
Schreibe den Merksatz in dein Heft.
Das GeoGebra-Applet verdeutlicht diesen Zusammenhang:
Das nachfolgenden Video zeigt Beispiele zur Anwendung dieses Gesetzes.
Dieses Video erklärt noch einmal ausführlich wie du rechnest, wenn ein Minuszeichen in einer Klammer steht.
Alles Klar? Setze die Zeichen passend ein.
a) (8-a)⋅(5+2b) = 40 + 16b -5a -2ab
b) (-3x+4)⋅(6+7y) = -18x - 21xy + 24 + 28y
c) (6-m)⋅(11-2n) = 66 - 12n - 11m + 2mn
d) (-8a - 2)⋅(5 + 9b) = -40a - 72ab - 10 - 18b
e) (3 + x)⋅(2 - y) = 6 - 3y + 2x - xy
f) (a + 10)⋅(4 - b) = 4a - ab + 40 - 10b
Schreibweise:
a) (n+2)(n+1) = n² + n·1 + n·2 + 2·1
Vorsicht mit den Vorzeichen:
e) (x-4)(-1-y) = x·(-1) + x·(-y) + (-4)·(-1) + (-4)·(-y)
= -x - xy + 4 + 4y
Erinnerung: Multiplikation mit Dezimalbrüchen
Welche Terme sind geeignet, die blaue Fläche zu berechnen?
(a⋅b-x⋅y) (!a⋅⟨b-y⟩+b⋅⟨a-x⟩) (!a⋅b+x⋅y) (⟨a-x⟩⋅⟨b-y⟩+x⋅⟨b-y⟩+y⋅⟨a-x⟩)
3. Binomische Formeln
Weiter geht es mit drei Sonderfällen bei der Multiplikation von Summen, den binomischen Formeln.