Benutzer:Buss-Haskert/Quadratische Funktionen/Scheitelpunktform: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 224: | Zeile 224: | ||
9 = 9 (w)<br> | 9 = 9 (w)<br> | ||
Es entsteht eine wahre Aussage (w), also liegt der Punkt auf der Parabel.|2=Tipp zu Nr. 6 (Musterlösung zu a)|3=Verbergen}} | Es entsteht eine wahre Aussage (w), also liegt der Punkt auf der Parabel.|2=Tipp zu Nr. 6 (Musterlösung zu a)|3=Verbergen}} | ||
{{Box|1=Zusammenfassung|2=Quadratische Funktionen haben verschiedene Strukturen, die zugehörigen Parabeln haben dementsprechend bestimmte Formen.<br> | |||
<div class="grid"> | |||
<div class="width-1-3">f(x) = ax² mit S(0|0)<br> | |||
[[Datei:F(x)=ax².png|rahmenlos]]</div> | |||
<div class="width-1-3">f(x) = ax² + c mit S(0|c)<br> | |||
[[Datei:F(x)=ax²+c.png|rahmenlos]]</div> | |||
<div class="width-1-3">f(x) = a(x + d)² + e mit S(-d|e)<br> | |||
[[Datei:F(x)=a(x+d)²+e.png|rahmenlos]]</div> | |||
</div>|3=Arbeitsmethode}} | |||
{{LearningApp|app=pa368wnrk22|width=100%|height=600px}} | |||
{{Box|Übung 21: Modellieren mit quadratischen Funktionen|[[Datei:Modellieren.png|rahmenlos|rechts]]Löse die Aufgabe aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich. | {{Box|Übung 21: Modellieren mit quadratischen Funktionen|[[Datei:Modellieren.png|rahmenlos|rechts]]Löse die Aufgabe aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich. |
Version vom 8. Juli 2022, 06:16 Uhr
SEITE IM AUFBAU
1 Quadratische Funktionen entdecken
2 Die Normalparabel f(x) = x²
3 Die gestreckte und gestauchte Parabel: Bedeutung des Parameters a in f(x) = ax²
4 Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c
5 Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)² + e
6 Die Normalform f(x) = x² + px + q und die allgemeine Form quadratischer Funktionen f(x) = ax² + bx + c
7 Nullstellen quadratischer Funktionen
5 Scheitelpunktform quadratischer Funktionen
Und nun noch einmal schrittweise:
5.1 Detlef: f(x) = (x + d)²
Detlef ist ebenfalls sportlich, allerdings auch ein wenig dusselig. Er läuft beim Sprint immer in die entgegengesetzte Richtung.
5.2 Emil: f(x) = x² + e
emil ist ebenfalls sehr sportlich:
Er kann sehr hoch springen, ebenso gut kann er tauchen.
Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)²+e
Nutze zur Lösungskontrolle das Applet. Schiebe den Scheitelpunkt S an den von dir angegebenen Punkt und schau, ob die Funktionsgleichung mit der im Buch angegebenen übereinstimmt
Nutze auch hier zur Lösungskontrolle das Applet. Verschiebe den Scheitelpunkt auf den im Buch angegeben Punkt und vergleiche die Funktionsgleichung mit deiner Lösung.
Originallink: https://www.geogebra.org/m/hgctdsff
Applet von Hans-Jürgen Elschenbroich
Originallink: https://www.geogebra.org/m/CdNTYBpZ
Applets von Wolfgang Wengler
Buch GeoGebra: Parabeln zeichnen
Originallink: https://www.geogebra.org/m/ZTXR23d8#chapter/236008
Applets von Bernhard Krügel
Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle
Applet von C.Buß-Haskert
Das Video erklärt dies noch einmal anschaulich.
Prüfe deine Zeichnungen mithilfe des Applets oben. Gib die Koordinaten des Scheitelpunktes ein und nutze für die Skizze den Schieberegler.
Scheitelpunkt für f(x): S(2|-1)
Scheitelpunkt für f(x): S(-1|2)
Scheitelpunkt für f(x): S(4|1)
Nutze das Applet: Verschiebe den Scheitelpunkt so, dass der Graph durch die angegebene Punkte verläuft. Wo liegt dann der Scheitelpunkt? Begründe!
Nutze das Applet und verschiebe den Scheitelpunkt entsprechend der Angaben in der Aufgabe. Prüfe so deine Lösung.
Verschiebe den Scheitelpunkt passend zur Funktionsgleichung. Prüfe dann, ob der angegebene Punkt auf der Parabel liegt.
Rechnerische Probe: PUNKTPROBE
Musterlösung zu Aufgabenteil a)
f(x) = (x-4)²; P(1|9)
9 = (1-4)²
9 = (-3)²
9 = 9 (w)