Benutzer:Buss-Haskert/Quadratische Funktionen/Scheitelpunktform: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 165: Zeile 165:
<small>Applets von Bernhard Krügel</small>
<small>Applets von Bernhard Krügel</small>


=== Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle ===
===Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle===


[[Datei:Idee Flipchart.png|links|rahmenlos|100x100px]] Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben. Das Video erklärt dies noch einmal anschaulich.
[[Datei:Idee Flipchart.png|links|rahmenlos|100x100px]] Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben. Das Video erklärt dies noch einmal anschaulich.
Zeile 185: Zeile 185:
Expertenaufgabe (Ergänzung zu Nr. 10): Spiegle die Parabeln auch an der x-Achse und gib die neue Funktionsgleichung an.|Üben}}
Expertenaufgabe (Ergänzung zu Nr. 10): Spiegle die Parabeln auch an der x-Achse und gib die neue Funktionsgleichung an.|Üben}}


{{Lösung versteckt|Schau das Video oben noch einmal an und skizziere die verschobene Normalparabel vom Scheitelpunkt aus entsprechend.|Tipp zu Nr. 4|Verbergen}}
{{Lösung versteckt|Schau das Video oben noch einmal an und skizziere die verschobene Normalparabel vom Scheitelpunkt aus entsprechend. Beachte den Tipp am Rand im Buch.|Tipp zu Nr. 4|Verbergen}}
{{Lösung versteckt|Erinnerung Quadraten:<br>
{{Lösung versteckt|Erinnerung Quadraten:<br>
[[Datei:Cartesian-coordinate-system-with-quadrant.svg|mini|Künstler: W!B:]]|zu Nr. 5: Einteilung des Koordinatensystems in Quadranten (Erinnerung)|Verbergen}}
[[Datei:Cartesian-coordinate-system-with-quadrant.svg|mini|Künstler: W!B:]]|zu Nr. 5: Einteilung des Koordinatensystems in Quadranten (Erinnerung)|Verbergen}}

Version vom 7. Juli 2022, 15:03 Uhr

SEITE IM AUFBAU


5 Scheitelpunktform quadratischer Funktionen

Die Scheitelpunktform entdecken
Experimentiere mit der Normalparabel f(x) = x². Verschiebe den Scheitelpunkt S im Koordinatensystem und beobachte die Auswirkung auf die Funktionsgleichung. Was fällt dir auf? Diskutiere mit deinem Partner/deiner Partnerin.
GeoGebra


Die Scheitelpunktform quadratischer Funktionen

Die quadratische Funktion der Form f(x) = (x+d)²+e heißt Scheitelpunktform. Ihr Graph ist eine verschobene Normalparabel mit dem Scheitelpunkt S(-d|e).

Der Parameter d verschiebt den Scheitelpunkt in x-Richtung: d>0 nach links verschoben ("dusseliger Detelf") und d<0 nach rechts.
Der Parameter e verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).

Und nun noch einmal schrittweise:

5.1 Detlef: f(x) = (x + d

Detlef ist ebenfalls sportlich, allerdings auch ein wenig dusselig. Er läuft beim Sprint immer in die entgegengesetzte Richtung.



Bedeutung des Parameters d

Welche Rolle spielt detlef ?

Verändere d mit dem Schieberegler. Welche Auswirkungen hat detlef auf das Schaubild der Normalparabel?
GeoGebra


f(x) = (x+d)² - Parabeln zeichnen

Erstelle je eine Wertetabelle für die Funktionsgleichungen und zeichne die Parabeln. Nutze verschiedene Farben. Beschreibe die Bedeutung des Parameters d für den Verlauf der Parabel.

Funktionsgleichung -3 -2 -1 0 1 2 3
f(x) = (x+2)² (-3+2)²=1 (-2+2)²=0 (-1+2)=1 (0+2)²=4 (1+2)²=9 (2+2)²16 (3+2)²=25
g(x) = (x+1)² (-3+1)²=4 ...
h(x) = (x-1)² (-3-1)²=16
p(x) = (x-2)² (-3-2)²=25
SP10 S.15 Einstieg oben.png



Übung 12 - online
  • Ordne in der LenarningApp den Funktionsgraphen die passenden Funktionsgleichungen zu.
  • Löse anschließend auf der Seite realmath so viele Aufgaben, dass du mindestens 300 Punkte sammelst.




5.2 Emil: f(x) = x² + e

emil ist ebenfalls sehr sportlich:

Er kann sehr hoch springen, ebenso gut kann er tauchen. Emil beim Hochsprung

Bedeutung des Parameters e

Welche Rolle spielt emil ?

Verändere e mithilfe des Schiebereglers. Welche Auswirkungen hat emil auf das Schaubild der Normalparabel?
GeoGebra



Den Parameter e hast du schon auf der vorherigen Seite kennengelernt, dort hieß er "c".


Übung 13 - online
  • Ordne in der LearningApp den Funktionsgraphen die passenden Funktionsgleichungen zu.
  • Löse anschließend auf der Seite realmath so viele Aufgaben, dass du mindestens 300 Punkte sammelst.



Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)²+e



Übung 14 - Scheitelpunktform online
Die Scheitelpunktform quadratischer Funktionen lautet f(X) = a(x + d)² + e. Du hast die Bedeutung der Parameter a(nton), d(etlef) und e(mil) erarbeitet. Wende dein Wissen in den nachfolgenden Übungen an.



Übung 15 - Scheitelpunktform

Löse die Aufgaben aus dem Buch.

  • S. 16, Nr. 1
  • S. 16, Nr. 2
  • S. 16, Nr. 3

Nutze zur Lösungskontrolle das Applet. Schiebe den Scheitelpunkt S an den von dir angegebenen Punkt und schau, ob die Funktionsgleichung mit der im Buch angegebenen übereinstimmt

GeoGebra
.

Nutze auch hier zur Lösungskontrolle das Applet. Verschiebe den Scheitelpunkt auf den im Buch angegeben Punkt und vergleiche die Funktionsgleichung mit deiner Lösung.

GeoGebra


Übung 16 - Verschobene Normalparabel

Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 300 Punkte gesammelt hast. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll. Notiere zu jeder Aufgabe ein Beispiel mit deinem erworbenen Wissen in dein Heft.


Übung 17 - Scheitelpunktform ablesen und Parabeln zeichnen
Bearbeite die nachfolgenden GeoGebra-Applets.

Originallink: https://www.geogebra.org/m/hgctdsff

GeoGebra

Applet von Hans-Jürgen Elschenbroich

Originallink: https://www.geogebra.org/m/CdNTYBpZ

GeoGebra


GeoGebra

Applets von Wolfgang Wengler

Buch GeoGebra: Parabeln zeichnen
Originallink: https://www.geogebra.org/m/ZTXR23d8#chapter/236008

GeoGebra
GeoGebra
GeoGebra
GeoGebra

Applets von Bernhard Krügel

Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle

Idee Flipchart.png

Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben. Das Video erklärt dies noch einmal anschaulich.



Übung 18 - Parablen skizzieren (online)
Bearbeite die Übungen aus dem GeoGebra-Applet, bis du sicher bist bei den Lösungen.
GeoGebra


Appelt von Wolfgang Wengler


Übung 19

Nachdem du die Aufgaben bis hier erfolgreich gelöst und diskutiert hast, sollten die nachfolgenden Aufgaben aus dem Buch kein Problem mehr für dich sein.

  • S.16 Nr. 4
  • S.16 Nr. 5
  • S.16 Nr. 8
  • S.16 Nr. 9
  • S.16 Nr. 10 (Nutze in GeoGebra die Funktion "Spiegle an Gerade", s.Tipp unten)
  • S.19 Nr. 13
Expertenaufgabe (Ergänzung zu Nr. 10): Spiegle die Parabeln auch an der x-Achse und gib die neue Funktionsgleichung an.
Schau das Video oben noch einmal an und skizziere die verschobene Normalparabel vom Scheitelpunkt aus entsprechend. Beachte den Tipp am Rand im Buch.

Erinnerung Quadraten:

Künstler: W!B:
Nutze das Applet oben: Verschiebe den Scheitelpunkt so, dass der Graph durch die angegebene Punkte verläuft. Wo liegt dann der Scheitelpunkt? Begründe!

Skizzen zu 8a, 8b:
SP10 S.16 Nr. 8a Tipp.png

SP10 S.16 Nr. 8b Tipp.png
Nutze das obige Applet und verschiebe den Scheitelpunkt entsprechend der Angaben in der Aufgabe. Prüfe so deine Lösung.

Bilderfolge zum Spiegeln der verschobenen Normalparabel an der y-Achse:
Verschobene Normalparabel spiegeln (GeoGebra) 1.png
Verschobene Normalparabel spiegeln (GeoGebra) 2.png
Verschobene Normalparabel spiegeln (GeoGebra) 3.png

Verschobene Normalparabel spiegeln (GeoGebra) 4.png


Übung 20 - Punktprobe

Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.

  • S. 16 Nr. 6


Üben-Üben-Üben
Wenn du noch mehr üben möchtest, nutze die nachfolgenden GeoGebra-Applets von Bernhard Krügel.
GeoGebra


GeoGebra


GeoGebra


GeoGebra