Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in allgemeinen Dreiecken: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
K (Spalten) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 25: | Zeile 25: | ||
</div> | </div> | ||
<br> | <br> | ||
<div class=„grid“> | |||
<div class="width-1-3"> | |||
① Bestimme γ:<br> | ① Bestimme γ:<br> | ||
Winkelsummensatz<br> | Winkelsummensatz<br> | ||
γ = 180° - α - β<br> | γ = 180° - α - β<br> | ||
= 180° - 42° - 62°<br> | = 180° - 42° - 62°<br> | ||
= 76°<br> | = 76°<br></div> | ||
<div class="width-1-3"> | |||
<br> | <br> | ||
② Berechne h<sub>a</sub>:<br> | ② Berechne h<sub>a</sub>:<br> | ||
Zeile 37: | Zeile 39: | ||
c · sin β = h<sub>a</sub> <br> | c · sin β = h<sub>a</sub> <br> | ||
8,5 · sin(42°) = h<sub>a</sub> <br> | 8,5 · sin(42°) = h<sub>a</sub> <br> | ||
5,7 (cm) <math>\approx</math> h<sub>a</sub> <br> | 5,7 (cm) <math>\approx</math> h<sub>a</sub> <br></div> | ||
<div class="width-1-3"> | |||
③ Berechne b:<br> | ③ Berechne b:<br> | ||
sin γ = <math>\tfrac{h_a}{b}</math> | ·b<br> | sin γ = <math>\tfrac{h_a}{b}</math> | ·b<br> | ||
Zeile 46: | Zeile 48: | ||
b = <math>\tfrac{\text{5,7}}{\text{sin(76°)}}</math> <br> | b = <math>\tfrac{\text{5,7}}{\text{sin(76°)}}</math> <br> | ||
b <math>\approx</math> 5,9 (cm)<br> | b <math>\approx</math> 5,9 (cm)<br> | ||
</div> | |||
</div> | |||
Berechne a:<br> | Berechne a:<br> | ||
<div class=" | <div class="width-1-3"> | ||
<div class="width-1-3">④ Berechne a<sub>1</sub>: | <div class="width-1-3">④ Berechne a<sub>1</sub>: | ||
cos β = <math>\tfrac{a_1}{c}</math> | ·c<br> | cos β = <math>\tfrac{a_1}{c}</math> | ·c<br> | ||
Zeile 288: | Zeile 291: | ||
[[Datei:Skizze zu Nr. 64 1.png|rahmenlos]] oder [[Datei:Skizze zu Nr. 64 2.png|rahmenlos]]<br> | [[Datei:Skizze zu Nr. 64 1.png|rahmenlos]] oder [[Datei:Skizze zu Nr. 64 2.png|rahmenlos]]<br> | ||
Prüfe dein Ergebnis auf der Seite Aufgabenfuchs.|Tipp zu Nr. 64|Verbergen}} | Prüfe dein Ergebnis auf der Seite Aufgabenfuchs.|Tipp zu Nr. 64|Verbergen}} | ||
Version vom 26. Februar 2022, 19:14 Uhr
SEITE IM AUFBAU
1) Sinus, Kosinus, Tangens
2) Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken
3) Berechnungen in allgemeinen Dreiecken
3 Strecken- und Winkelberechnungen in allgemeinen Dreiecken
Die Seitenverhältnisse Sinus, Kosinus und Tanges gelten nur für rechtwinklige Dreiecke.
Um in allgemeinen Dreiecken Strecken und Winkel berechnen zu können, zerlege das Dreieck mithilfe einer Höhe in zwei rechtwinklige Dreiecke.
3.1 Beispiel 1: Eine Seite und zwei Winkel sind gegeben
1. Möglichkeit: Zerlege das Dreieck durch die Höhe ha ein zwei rechtwinklige Dreiecke.
① Bestimme γ:
Winkelsummensatz
γ = 180° - α - β
= 180° - 42° - 62°
② Berechne ha:
sin β = | ·c
c · sin β = ha
8,5 · sin(42°) = ha
③ Berechne b:
sin γ = | ·b
b · sin γ = ha | : sin γ
b =
b =
b 5,9 (cm)
Berechne a:
cos β = | ·c
c · cos β = a1
8,5 · cos (42°) = a1
cos γ = | ·c
b · cos γ = a2
5,9 · cos (76°) = a2
a = a1 + a2
= 6,3 + 1,4
2. Möglichkeit: Zerlege das Dreieck durch die Höhe hb ein zwei rechtwinklige Dreiecke.
① Bestimme γ:
Winkelsummensatz
γ = 180° - α - β
= 180° - 42° - 62°
= 76°
② Berechne hb:
sin α = | ·c
c · sin α = hb
8,5 · sin(62°) = hb
7,5 (cm) hb
③ Berechne a:
sin γ = | ·a
a · sin γ = hb | : sin γ
a =
a =
a 7,7 (cm)
Berechne b:
cos α = | ·c
c · cos α = b1
8,5 · cos (62°) = b1
cos γ = | ·c
a · cos γ = b2
7,7 · cos (76°) = b2
b = b1 + b2
= 4,0 + 1,9
3.2 Beispiel 2: Zwei Seiten und der eingeschlossene Winkel sind gegeben
1. Möglichkeit: Zerlege das Dreieck durch die Höhe ha ein zwei rechtwinklige Dreiecke.
① Bestimme ha:
sin γ = |·b
b · sin γ = ha
5,8 · sin(65°) = ha
5,2 (cm) ha
② Bestimme a2
cos γ = |·b
b · cos γ = a2
5,8 · cos(65°) = a2
2,5 (cm) a2
③ Bestimme a1
a – a2= a1
8,2 - 3,8 = a1
5,7 (cm) = a1
④ Bestimme β
tan β =
tan β = |tan-1
β 42,4°
⑤ Bestimme c
sin β = |·c
c · sin β = ha |: sin β
c =
c =
c=
c =
c 7,7 (cm)
⑥ Bestimme den letzten Winkel α
Winkelsumme
α + β + γ = 180° |- β; -γ
α = 180° - β - γ
α = 180° - 42,4° - 65°
α = 72,6°
2. Möglichkeit: Zerlege das Dreieck durch die Höhe hb ein zwei rechtwinklige Dreiecke.
① Bestimme hb:
sin γ = |·a
a · sin γ = hb
8,2 · sin(65°) = hb
7,4 (cm) hb
② Bestimme b2
cos γ = |·a
a · cos γ = b2
8,2 · cos(65°) = b2
3,5 (cm) b2
③ Bestimme b1
b – b2= b1
5,8 - 3,5 = b1
2,3 (cm) = b1
④ Bestimme α
tan α =
tan α = |tan-1
α 72,7°
⑤ Bestimme c
sin α = |·c
c · sin α = hb |: sin α
c =
c =
c=
c =
c 7,7 (cm)
⑥ Bestimme den letzten Winkel β
Winkelsumme
α + β + γ = 180° |- α; -γ
β = 180° - α - γ
β= 180° - 72,7° - 65°
β = 42,3°
Du merkst, es kommt zu Rundungsungenauigkeiten.
3.3 Beispiel 3: Zwei Seiten und ein anliegender Winkel sind gegeben
Erkläre, warum es hier nur eine Möglichkeit gibt, das Dreieck zu zerlegen: die Höhe hc .
① Bestimme hc:
sin α = |·b
b · sin α = hc
10,5 · sin(37°) = hb
6,3 (cm) hc
② Bestimme c1
cos α = |·b
b · cos α = c1
10,5 · cos(37°) = c1
8,4 (cm) c1
③ Bestimme c2
= a² |-
= a² - |
c2=
c2 =
c2 3,1 (cm)
④ Bestimme c:
c = c1 + c2
= 8,4 + 3,1
= 11,5 (cm)
⑤ Bestimme β
sin β =
sin β = |sin-1
β 64,2°
⑥ Bestimme den letzten Winkel γ
Winkelsumme
α + β + γ = 180° |- α; -β
γ = 180° - β - γ
γ= 180° - 37° - 64,2°
γ = 78,8°
Das Video fasst das Vorgehen noch einmal zusammen:
3.4 Anwendungsaufgaben
Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann den fehlenden Winkel, die Länge der entsprechenden Höhe und die Längen der Seiten a und b.
oder
Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann schrittweise die fehlenden Größen.
oder
Erstelle eine Skizze zur Aufgabe und beschrifte sie vollständig.
Zerlege das Dreieck durch eine Höhe in zwei rechtwinklige Teildreiecke.
oder
Die Dachfläche besteht aus 4 Dreiecksflächen. Bestimme also die Fläche eines Dreiecks und multipliziere diesen Flächeninhalt mit 4. Die Skizze hilft dir bei der Bestimmung der nötigen Größen. (ADreieck= )
Betrachte das linke Dreieck ABL. Zerlege es in rechtwinklige Teildreiecke (ohne die gegebene Seite c zu teilen). Die Skizze hilft dir für deinen Lösungsplan.
Bestimme ha, δ1, a1, a2, a.
Betrachte zur Lösung das linke Dreieck BCL. Gegeben ist nun auch aus Teil a) die Länge der Strecke a = 3,63 sm. Berechne den Nebenwinkel β2 von β und den Winkel δ2 mihilfe der Winkelsumme. Zerlege auch dieses Dreieck wieder in zwei rechtwinklige Teildreiecke. Die Skizze hilft dir, die nötigen Rechenschritte zu planen.
3.5 Formel für den Flächeninhalt beliebiger Dreiecke (mit Sinus)