Herta-Lebenstein-Realschule/Lineare Funktionen im Aktiv-Urlaub/2.4 Anwendungen: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
(Übungen ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 9: | Zeile 9: | ||
<br> | <br> | ||
== | ==Lineare Funktionen im Aktivurlaub und andere Anwendungen== | ||
Es gibt Situationen in unserem Alltag, in denen sich Probleme oder Fragen mithilfe von linearen Funktionen beschreiben und lösen lassen. Solche Aufgaben nennen wir "Anwendungsaufgaben". Die Alltagssituation wird in ein mathematisches Modell übertragen, mit unserem Wissen zu den linearen Funktionen mathematisch gelöst und diese Lösung dann auf die Situation bezogen. Die nachfolgende Struktur hilft dir dabei: | Es gibt Situationen in unserem Alltag, in denen sich Probleme oder Fragen mithilfe von linearen Funktionen beschreiben und lösen lassen. Solche Aufgaben nennen wir "Anwendungsaufgaben". Die Alltagssituation wird in ein mathematisches Modell übertragen, mit unserem Wissen zu den linearen Funktionen mathematisch gelöst und diese Lösung dann auf die Situation bezogen. Die nachfolgende Struktur hilft dir dabei: | ||
Zeile 164: | Zeile 164: | ||
{{Lösung versteckt|1=Vergleiche für jedes Fotoformat den Preis, den Frau Aab für die gewünschte Anzahl an Fotos bezahlen müsste. Welcher Anbieter ist jeweils günstiger? |2=Tipp zum Interpretieren der mathematischen Ergebnisse|3=Verbergen}}|Tipps zu Nr. 2|Verbergen}} | {{Lösung versteckt|1=Vergleiche für jedes Fotoformat den Preis, den Frau Aab für die gewünschte Anzahl an Fotos bezahlen müsste. Welcher Anbieter ist jeweils günstiger? |2=Tipp zum Interpretieren der mathematischen Ergebnisse|3=Verbergen}}|Tipps zu Nr. 2|Verbergen}} | ||
{{Box|Anwendungsaufgabe 5:Fahrt in den Urlaub| | |||
Janas Familie fährt mit dem neuen Auto in den Urlaub. Auf dem Tacho stehen schon 30km als sie losfahren. Laut Routenplaner benötigen sie bei einer festen Durchschnittsgeschwindigkeit 6 Stunden. Ihr Vater sagt: „Am Ankunftsort werden 540 km auf dem Tacho stehen.“ Jana fragt sich, mit welcher festen Durchschnittsgeschwindigkeit der Routenplaner rechnet. <br> | Janas Familie fährt mit dem neuen Auto in den Urlaub. Auf dem Tacho stehen schon 30km als sie losfahren. Laut Routenplaner benötigen sie bei einer festen Durchschnittsgeschwindigkeit 6 Stunden. Ihr Vater sagt: „Am Ankunftsort werden 540 km auf dem Tacho stehen.“ Jana fragt sich, mit welcher festen Durchschnittsgeschwindigkeit der Routenplaner rechnet. <br> | ||
[[Datei:Tacho_.jpg|200px]] | [[Datei:Tacho_.jpg|200px]]|Üben}} | ||
{{Box|1=Anwendungsaufgabe 7:Roaming-Gebühren|2=Seit Mitte 2017 gibt es keine Roaming-Gebühren in den EU-Ländern mehr. Da die Schweiz, in der Hannes und Paul Urlaub machen möchten, zu den Nicht-EU-Ländern gehört, müssen sie bei der Handynutzung aufpassen. | |||
Seit Mitte 2017 gibt es keine Roaming-Gebühren in den EU-Ländern mehr. Da die Schweiz, in der Hannes und Paul Urlaub machen möchten, zu den Nicht-EU-Ländern gehört, müssen sie bei der Handynutzung aufpassen. | |||
Hannes findet im Internet drei verschiedene EU-Auslands-Sprach-Pakete für seinen Mobilfunkanbieter. Für welchen soll er sich entscheiden? | Hannes findet im Internet drei verschiedene EU-Auslands-Sprach-Pakete für seinen Mobilfunkanbieter. Für welchen soll er sich entscheiden? | ||
<table> | <table> | ||
Zeile 195: | Zeile 191: | ||
</tr> | </tr> | ||
</table> | </table> | ||
3=|Üben}} | |||
{{Lösung versteckt|1=Zusätzliche Kosten, die entstehen, wenn jemand im Ausland das Handy benutzt (Anrufe, SMS, Internetnutzung).|2=Was sind Roaming-Gebühren?|3=Verbergen}} | {{Lösung versteckt|1=Zusätzliche Kosten, die entstehen, wenn jemand im Ausland das Handy benutzt (Anrufe, SMS, Internetnutzung).|2=Was sind Roaming-Gebühren?|3=Verbergen}} | ||
{{Box|Anwendungsaufgabe 8:Ferienjob|[[Datei:Roller fahren.png|200px]]<br> | |||
[[Datei:Roller fahren.png|200px]]<br> | Linus möchte sich einen gebrauchten Roller im Wert von etwa 1500€ anschaffen. Dazu hat er bereits 500€ gespart. In den Sommerferien kann er einen Ferienjob annehmen. Für jede Arbeitsstunde bekommt Linus 9€ ausbezahlt. Die tägliche Arbeitszeit beträgt acht Stunden. <br> | ||
Linus möchte sich einen gebrauchten Roller im Wert von etwa 1500€ anschaffen. Dazu hat er bereits 500€ gespart. In den Sommerferien kann er einen Ferienjob annehmen. Für jede Arbeitsstunde bekommt Linus 9€ ausbezahlt. Die tägliche Arbeitszeit beträgt acht Stunden. | |||
#Reichen drei Arbeitswochen aus? | #Reichen drei Arbeitswochen aus? | ||
#Linus überlegt, ob er am Tag sieben Stunden arbeiten soll. | #Linus überlegt, ob er am Tag sieben Stunden arbeiten soll.|Üben}} |
Version vom 27. Mai 2021, 14:01 Uhr
Vorwissen
1 Zuordnungen und Funktionen
2 Lineare Funktionen
2.1 Lineare Funktionen erkennen und darstellen
2.2 Funktionsgleichung und Funktionsgraph
2.3 Wertetabelle und Funktionsgleichung
Lineare Funktionen im Aktivurlaub und andere Anwendungen
Es gibt Situationen in unserem Alltag, in denen sich Probleme oder Fragen mithilfe von linearen Funktionen beschreiben und lösen lassen. Solche Aufgaben nennen wir "Anwendungsaufgaben". Die Alltagssituation wird in ein mathematisches Modell übertragen, mit unserem Wissen zu den linearen Funktionen mathematisch gelöst und diese Lösung dann auf die Situation bezogen. Die nachfolgende Struktur hilft dir dabei:
Ideensammlung:
mögliche Schulbuchaufgaben
- S. 133, Nr. 1
- S. 133, Nr. 2