Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in allgemeinen Dreiecken: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
K (versteckte Lösung ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 286: | Zeile 286: | ||
* S. 100 Nr. 7 | * S. 100 Nr. 7 | ||
* S. 100 Nr. 8|Üben}} | * S. 100 Nr. 8|Üben}} | ||
{{Lösung versteckt|1=Die Dachfläche besteht aus 4 Dreiecksflächen. Bestimme also die Fläche eines Dreiecks und multipliziere diesen Flächeninhalt mit 4. Die Skizze hilft dir bei der Bestimmung der nötigen Größen. (A<sub>Dreieck</sub>= <math>\tfrac{g\cdot h}{2}</math>)<br> | |||
[[Datei:S. 100 Nr. 7 Skizze.png|rahmenlos]]<br> | |||
Zwischenlösung: h<sub>c</sub>=14,42m; c=10,78m|2=Tipp zu Nr. 7|3=Verbergen}} | |||
{{Lösung versteckt|1=Tipp|2=Tipp zu Nr. 8|3=Verbergen}} | |||
===3.5 Formel für den Flächeninhalt beliebiger Dreiecke (mit Sinus)=== | ===3.5 Formel für den Flächeninhalt beliebiger Dreiecke (mit Sinus)=== | ||
Version vom 22. März 2021, 13:32 Uhr
SEITE IM AUFBAU
1) Sinus, Kosinus, Tangens
2) Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken
3) Berechnungen in allgemeinen Dreiecken
3 Strecken- und Winkelberechnungen in allgemeinen Dreiecken
Die Seitenverhältnisse Sinus, Kosinus und Tanges gelten nur für rechtwinklige Dreiecke.
Um in allgemeinen Dreiecken Strecken und Winkel berechnen zu können, zerlege das Dreieck mithilfe einer Höhe in zwei rechtwinklige Dreiecke.
3.1 Beispiel 1: Eine Seite und zwei Winkel sind gegeben
1. Möglichkeit: Zerlege das Dreieck durch die Höhe ha ein zwei rechtwinklige Dreiecke.
① Bestimme γ:
Winkelsummensatz
γ = 180° - α - β
= 180° - 42° - 62°
= 76°
② Berechne ha:
sin β = | ·c
c · sin β = ha
8,5 · sin(42°) = ha
5,7 (cm) ha
③ Berechne b:
sin γ = | ·b
b · sin γ = ha | : sin γ
b =
b =
b 5,9 (cm)
Berechne a:
cos β = | ·c
c · cos β = a1
8,5 · cos (42°) = a1
cos γ = | ·c
b · cos γ = a2
5,9 · cos (76°) = a2
a = a1 + a2
= 6,3 + 1,4
2. Möglichkeit: Zerlege das Dreieck durch die Höhe hb ein zwei rechtwinklige Dreiecke.
① Bestimme γ:
Winkelsummensatz
γ = 180° - α - β
= 180° - 42° - 62°
= 76°
② Berechne hb:
sin α = | ·c
c · sin α = hb
8,5 · sin(62°) = hb
7,5 (cm) hb
③ Berechne a:
sin γ = | ·a
a · sin γ = hb | : sin γ
a =
a =
a 7,7 (cm)
Berechne b:
cos α = | ·c
c · cos α = b1
8,5 · cos (62°) = b1
cos γ = | ·c
a · cos γ = b2
7,7 · cos (76°) = b2
b = b1 + b2
= 4,0 + 1,9
3.2 Beispiel 2: Zwei Seiten und der eingeschlossene Winkel sind gegeben
1. Möglichkeit: Zerlege das Dreieck durch die Höhe ha ein zwei rechtwinklige Dreiecke.
① Bestimme ha:
sin γ = |·b
b · sin γ = ha
5,8 · sin(65°) = ha
5,2 (cm) ha
② Bestimme a2
cos γ = |·b
b · cos γ = a2
5,8 · cos(65°) = a2
2,5 (cm) a2
③ Bestimme a1
a – a2= a1
8,2 - 3,8 = a1
5,7 (cm) = a1
④ Bestimme β
tan β =
tan β = |tan-1
β 42,4°
⑤ Bestimme c
sin β = |·c
c · sin β = ha |: sin β
c =
c =
c=
c =
c 7,7 (cm)
⑥ Bestimme den letzten Winkel α
Winkelsumme
α + β + γ = 180° |- β; -γ
α = 180° - β - γ
α = 180° - 42,4° - 65°
α = 72,6°
2. Möglichkeit: Zerlege das Dreieck durch die Höhe hb ein zwei rechtwinklige Dreiecke.
① Bestimme hb:
sin γ = |·a
a · sin γ = hb
8,2 · sin(65°) = hb
7,4 (cm) hb
② Bestimme b2
cos γ = |·a
a · cos γ = b2
8,2 · cos(65°) = b2
3,5 (cm) b2
③ Bestimme b1
b – b2= b1
5,8 - 3,5 = b1
2,3 (cm) = b1
④ Bestimme α
tan α =
tan α = |tan-1
α 72,7°
⑤ Bestimme c
sin α = |·c
c · sin α = hb |: sin α
c =
c =
c=
c =
c 7,7 (cm)
⑥ Bestimme den letzten Winkel β
Winkelsumme
α + β + γ = 180° |- α; -γ
β = 180° - α - γ
β= 180° - 72,7° - 65°
β = 42,3°
Du merkst, es kommt zu Rundungsungenauigkeiten.
3.3 Beispiel 3: Zwei Seiten und ein anliegender Winkel sind gegeben
Erkläre, warum es hier nur eine Möglichkeit gibt, das Dreieck zu zerlegen: die Höhe hc .
① Bestimme hc:
sin α = |·b
b · sin α = hc
10,5 · sin(37°) = hb
6,3 (cm) hc
② Bestimme c1
cos α = |·b
b · cos α = c1
10,5 · cos(37°) = c1
8,4 (cm) c1
③ Bestimme c2
= a² |-
= a² - |
c2=
c2 =
c2 3,1 (cm)
④ Bestimme c:
c = c1 + c2
= 8,4 + 3,1
= 11,5 (cm)
⑤ Bestimme β
sin β =
sin β = |sin-1
β 64,2°
⑥ Bestimme den letzten Winkel γ
Winkelsumme
α + β + γ = 180° |- α; -β
γ = 180° - β - γ
γ= 180° - 37° - 64,2°
γ = 78,8°
Das Video fasst das Vorgehen noch einmal zusammen:
3.4 Anwendungsaufgaben
Die Dachfläche besteht aus 4 Dreiecksflächen. Bestimme also die Fläche eines Dreiecks und multipliziere diesen Flächeninhalt mit 4. Die Skizze hilft dir bei der Bestimmung der nötigen Größen. (ADreieck= )
3.5 Formel für den Flächeninhalt beliebiger Dreiecke (mit Sinus)