Digitale Werkzeuge in der Schule/Trainingsfeld Ableitungen/Graphisches Ableiten: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Main>Marius WWU3 |
Main>Marius WWU3 |
||
Zeile 78: | Zeile 78: | ||
{{Aufgaben|4 Wie sieht der Graph von f(x) aus?| | {{Aufgaben|4 Wie sieht der Graph von f(x) aus?| | ||
'''a)''' Die Abbildung zeigt den Graphen einer Ableitungsfunktion f | '''a)''' Die Abbildung zeigt den Graphen einer Ableitungsfunktion f(x). Skizziere die dazugehörige Funktion F(x) in deinem Heft und erkläre dein Vorgehen. | ||
[[Datei:Aufgabe 4.png|f(x)=3x^(3)+2x^(2)-5x|600px|links|rahmenlos]]<br /> | [[Datei:Aufgabe 4.png|f(x)=3x^(3)+2x^(2)-5x|600px|links|rahmenlos]]<br /> | ||
Zeile 126: | Zeile 126: | ||
'''b)''' Gibt es nur eine Möglichkeit, wie der Funktionsgraph verlaufen kann? Wie verändert eine Konstante den Verlauf von | '''b)''' Gibt es nur eine Möglichkeit, wie der Funktionsgraph verlaufen kann? Wie verändert eine Konstante den Verlauf von F(x) und was passiert mit ihr, wenn man F(x) ableitet? }} | ||
{{Aufgaben|5 Zugfahrt|Auf der Fahrt zwischen Münster und Münster Hiltrup erreichen die Züge einmal die Geschwindigkeit von 120Km/h. Die Funktion f(x) beschreibt die Geschwindigkeit des Zuges auf dieser Strecke, dabei stehen die x-Werte für die gefahrene Zeit in Minuten und die Funktionswerte f(x) für die gefahrene Geschwindigkeit. Die Funktionswerte findest du in der Tabelle unten. | {{Aufgaben|5 Zugfahrt|Auf der Fahrt zwischen Münster und Münster Hiltrup erreichen die Züge einmal die Geschwindigkeit von 120Km/h. Die Funktion f(x) beschreibt die Geschwindigkeit des Zuges auf dieser Strecke, dabei stehen die x-Werte für die gefahrene Zeit in Minuten und die Funktionswerte f(x) für die gefahrene Geschwindigkeit. Die Funktionswerte findest du in der Tabelle unten. |
Version vom 15. November 2018, 18:05 Uhr
In diesem Lernpfad kannst du üben, Funktionen und ihre Ableitungen anhand ihrer Graphen zu untersuchen. Der Zusammenhang zwischen besonderen Punkten und Merkmalen einer Funktion und ihrer Ableitung stehen hier im Vordergrund. Im Folgenden findest du Aufgaben, um deine Kenntnisse im graphischen Ableiten zu vertiefen (Forderaufgaben) aber auch, um Lücken zu schließen und Stoff zu wiederholen (Förderaufgaben). Unter jeder Aufgabe gibt es Hilfestellungen, auf die du zurückgreifen kannst, wenn du mal nicht weiterkommst.
|
Förderaufgaben
Bereit für die Forderaufgaben? Teste dein Wissen!
Forderaufgaben
x | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
f(x) | 0 | 76,8 | 115,2 | 115,2 | 76,8 | 0 |
<popup name="Lösung zu a)">
</popup>