Benutzer:Buss-Haskert/Terme(mit Klammern): Unterschied zwischen den Versionen

Aus ZUM Projektwiki
K (Navigation)
Markierung: 2017-Quelltext-Bearbeitung
K (Video ergänzt)
Markierung: 2017-Quelltext-Bearbeitung
Zeile 181: Zeile 181:
Beim Ausklammern wird eine Summe in ein Produkt umgewandelt, es werden also Klammern hinzugefügt.  
Beim Ausklammern wird eine Summe in ein Produkt umgewandelt, es werden also Klammern hinzugefügt.  
Dies ist nur dann möglich, wenn die Summanden gemeinsame Faktoren haben.
Dies ist nur dann möglich, wenn die Summanden gemeinsame Faktoren haben.
<br>
{{#ev:youtube|dJ4iOU3TK0w|800|center}}<br>


{{Box|1=Ausklammern|2=Gemeinsame Faktoren in einer Summe können ausgeklammert werden.<br>
{{Box|1=Ausklammern|2=Gemeinsame Faktoren in einer Summe können ausgeklammert werden.<br>

Version vom 19. November 2020, 20:38 Uhr

Bild von analogicus auf Pixabay
Lernpfad Terme (mit Klammern)

In diesem Lernpfad lernst du, wie du mit Termen rechnest. Grundlagen dazu hast du schon in Klasse 7 erarbeitet, diese werden im Vorwissen wiederholt.

Nun liegt der Schwerpunkt auf Termen mit Klammern. Du lernst, wie du die Klammern von Termen auflösen kannst. Zudem lernst du die Binomischen Formeln kennen, die dir ebenfalls helfen, Klammern aufzulösen.

Damit du dem Lernpfad folgen kannst, prüfe zunächst dein Vorwissen mithilfe der Aufgaben in der nachfolgenden Tabelle.

Zusätzliche Aufgaben findest du in deinem Account bei ANTON.

Vorwissen

Bearbeite die Aufgaben in der Tabelle: (Buch: Schnittpunkt Mathematik - Differenzierende Ausgabe 8, Klett)

Beschriftung
Du kannst Übungen im Buch  Übungen online
mit Fachbegriffen umgehen S. 8 Nr. 1

-Terme aufstellen und benennen S. 8 Nr. 2

-Terme addieren und subtrahieren S.8 Nr. 3

-Terme multiplizieren und dividieren S.8 Nr. 4 (+Kahoot!)

-Terme mit Klammern vereinfachen

(+ 🙂und - )

S.8 Nr. 5

- Werte von Termen berechnen

(Vorrangregeln)Vorfahrtschild.png

S. 8 Nr. 7

Vergleiche deine Lösungen mit den Lösungen hinten im Buch!


1. Ausmultiplizieren und Ausklammern (vor der Klammer )

Wiederholung

Skizziere das Rechteck in dein Heft und berechne den Flächeninhalt des gesamten Rechtecks.

Skizze Rechteck Distributivgesetz.png






Findest du verschiedene Möglichkeiten? Notiere im Heft.

Vergleiche deine Ideen mit denen im nachfolgenden Video:

Wie lautet der Name dieses Gesetzes? Notiere dies als Überschrift über die obige Zeichnung in dein Heft.

Das Gesetz heißt Verteilungsgesezt (Distributivgesetz). Wir haben dies umgangssprachlich auch "Jedem die Hand geben" genannt und die Hände als Tipp gezeichnet.
Human-emblem-handshake-green-128.png

Dieses Gesetz wird im folgenden GeoGebra-Applet noch einmal veranschaulicht. Du kannst die Zahlen durch Variablen ersetzen, indem du die Häkchen "Variable anzeigen" auswählst.

GeoGebra

Das Verteilungsgesetz lässt sich auf das Rechnen mit Variablen und Termen übertragen:


Verteilungsgesetz (Distributivgesetz)
Zeichne die Figur in dein Heft und fülle die Lücken im Merksatz. Schreibe ihn in dein Heft ab.


Rechteck Distributivgesetz allgemein.png




Auch hier ist das große Rechteck aus den kleinen Flächen zusammengesetzt. Der Flächeninhalt kann auf zwei Arten angegeben werden:

als Produkt der Seitenlängen a⟨b+c⟩ und als Summe der einzelnen Flächen a⋅b + a⋅c

Es gilt also: a⋅(b+c) = a⋅b + a⋅c.


Übung 1: Verteilungsgesetz: Rechnen mit Rechtecken
Löse zur Übung die nachfolgenden LearningApps. Melde dich dazu zuvor mit deine Account bei Learningapps an.



Übung 2
Bearbeite im Buch S. 11 Nr. 1 in deinem Heft.
Um die Gesamtfläche als Summe auszudrücken, addiere die Flächeninhalte der einzelnen kleinen Rechtecke. Um die Gesamtfläche als Produkt auszudrücken, bestimme die gesamten Seitenlängen und berechne den Flächeninhalt mit "Länge ⋅ Breite".

Summe: Die Figur lässt sich in drei Teilrechtecke zerlegen, mit jeweils der Breite x und den verschiedenen Längen r, s und t. Die Gesamtfläche setzt sich zusammen aus der Summe von x⋅r + x⋅s + x⋅t.

Produkt: Die Figur ist ein Rechteck mit der Breite x und der Länge (r + s + t), die Gesamtflächen berechnen wir mit "Länge⋅Breite", also (r + s + t)⋅x [oder x⋅(r + s + t)].


Übung 3
Löse Buch S. 12 Nr. 13a,b und d. Eine Skizze kann dir helfen. Info: Der Buchstabe M steht für "Mantelfläche". So wird die Summe der Seitenflächen eines Quaders bezeichnet.
Skizze zu a)
Mantel a.png

Summe: M = x⋅(x+2) + x⋅(x+1) + x⋅(x+2) + x⋅(x+1)

Produkt: M = x⋅(4x+6)
Skizze zu b)
Mantel b.png
Skizze zu d)
Mantel d.png
Übung 4
Erstelle selbst eine LearningApp, in der die Gesamtfläche als Summe und als Produkt ausgedrückt werden kann.


1.1 Ausmultiplizieren

Durch Ausmultiplizieren wird ein Produkt in eine Summe umgewandelt, die Klammern werden also aufgelöst.

Hefteintrag: Ausmultiplizieren

Beim Ausmultiplizieren wird jeder Summand in der Klammer mit dem Faktor vor/nach der Klammer multipliziert.

Tipp: "Jedem die Hand geben"
Human-emblem-handshake-green-128.png

Beispiele:

a)

Produkt Summe

2⋅(x + 5) = 2⋅x + 2⋅5

                = 2x + 10
b)

Produkt Summe

(a + 3b)⋅2c = a⋅2c + 3b⋅2c

                    = 2ac + 6bc


Übung 5 Überflüssige Malpunkte
Um Produktterme so einfach wie möglich zu schreiben, dürfen überflüssige Malpunkte weggelassen werden. Dies sind Malpunkte zwischen einer Zahl und einer Variablen und zwischen einer Zahl oder Variablen und einer Klammer.Markiere die überflüssigen Malpunkte in den Termen.


Übung 6 Ausmultiplizieren
Löse die Klammern auf und vereinfache den Term so weit wie möglich.


Übung 7 Ausmultiplizieren

Löse Buch S. 11 Nr. 2, Nr. 5 und S. 12 Nr. 10, 11.

Zu Nr. 2, 10 und 11: Schreibe die Aufgabe in dein Heft ab, multipliziere aus und vereinfache den Term so weit wie möglich.
Die Malpunkte zwischen der Zahl bzw. der Variablen und der Klammer wurden teilweise weggelassen, du musst sie im Kopf ergänzen. Hier also: 5(x+ 2) ist dasselbe wie 5⋅(x+2)
Ausmultiplizieren: Jedem die Hand geben! Notiere als Hilfe Bögen über die Zahlen bzw. Variablen, die du multiplizierst.
Ausmultiplizieren Bsp 1a.png
Vorsicht mit den Vorzeichen und Rechenzeichen: Das Zeichen in der Klammer wird übernommen und mit der Zahl vor der Klammer multipliziert
Ausmultiplizieren Bsp 2.png
Vorsicht mit den Vorzeichen und Rechenzeichen: Hat der Term außerhalb der Klammer ein Minuszeichen, wird dies mit multipliziert
Ausmultiplizieren Bsp 3a.png
Welcher Term muss jeweils ergänzt werden, damit beim Ausmultiplizieren die vorgegebene Lösung entsteht? In Aufgabe a) ist es die "4", denn 9x(4+3y) = 36x + 27xy
Ausmultiplizieren Bsp 4.png
Das Distributivgesetz gilt auch für die Division (Nr. 10) und für mehrere Summanden (Nr. 11)


1.2 Ausklammern

Beim Ausklammern wird eine Summe in ein Produkt umgewandelt, es werden also Klammern hinzugefügt. Dies ist nur dann möglich, wenn die Summanden gemeinsame Faktoren haben.



Ausklammern

Gemeinsame Faktoren in einer Summe können ausgeklammert werden.
Beispiel:
8x + 12xy
= 4x⋅2 + 4x⋅3y

= 4x⋅(2 + 3y)


Übung 8 Ausklammern
Suche in den LearningApps nach gemeinsamen Faktoren der Summenden und klammere diese dann aus.


Übung 9 Ausklammern
Löse Buch S. 11 Nr. 6 im Heft. Schreibe die Aufgabe ab, und klammere dann gemeinsame Faktoren aus.

Hier sind die Faktoren, die ausgeklammert werden müssen, angegeben.

a) 8⋅(...) b) 7x⋅(...) c) 11y⋅(...) d) 9b(-...+...) e) 20s(...) f) 15vw(...)