Benutzer:Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften: Unterschied zwischen den Versionen
K (Applet ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
K (Konstruktionsanweisung ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 92: | Zeile 92: | ||
<br> | <br> | ||
Sprinteraufgabe: | Sprinteraufgabe: | ||
Konstruiere ein Parallelogramm mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Parallelogramm bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte. | Konstruiere ein Parallelogramm mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Parallelogramm bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte. | ||
<div class="grid"> | <div class="grid"> | ||
<div class="width-1-3">{{Lösung versteckt|1=1.Zeichne die Punkte A, B und C beliebig.|2=1. Schritt|3=Verbergen}}</div> | <div class="width-1-3">{{Lösung versteckt|1=1.Zeichne die Punkte A, B und C beliebig.|2=1. Schritt|3=Verbergen}}</div> | ||
Zeile 104: | Zeile 104: | ||
</div> | </div> | ||
<div class="grid"> | <div class="grid"> | ||
<div class="width-1-3">{{Lösung versteckt|1= | <div class="width-1-3">{{Lösung versteckt|1=7. Vieleck ABCD.|2=7. Schritt|3=Verbergen}}</div> | ||
<div class="width-1-3"></div> | <div class="width-1-3"></div> | ||
<div class="width-1-3"></div> | <div class="width-1-3"></div> | ||
Zeile 129: | Zeile 129: | ||
<br> | <br> | ||
Sprinteraufgabe: | Sprinteraufgabe: | ||
Konstruiere eine Raute mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben eine Raute bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte. | Konstruiere eine Raute mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben eine Raute bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte. | ||
<div class="grid"> | |||
<div class="width-1-3">{{Lösung versteckt|1=1.Zeichne die Punkte A und B beliebig.|2=1. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=2. Zeichne die Strecke f mit den Endpunkten A und B.|2=2. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=3. Zeichne einen Kreis c um B mit dem Radius f.|2=3. Schritt|3=Verbergen}}</div> | |||
</div> | |||
<div class="grid"> | |||
<div class="width-1-3">{{Lösung versteckt|1=4. Zeichne den Punkt C auf c (Punkt auf Objekt).|2=4. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=5. Zeichne die Strecke g mit den Endpunkten B und C.|2=5. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=6. Zeichne eine parallele Gerade h zu g durch A.|2=6. Schritt|3=Verbergen}}</div> | |||
</div> | |||
<div class="grid"> | |||
<div class="width-1-3">{{Lösung versteckt|1=7. Zeichne eine parallele Gerade i zu f durch C.|2=7. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=8. Schnittpunkt D ist der Schnittpunkt der Geraden h und i.|2=8. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=9. Vieleck ABCD|2=9. Schritt|3=Verbergen}}</div> | |||
</div> | |||
<ggb_applet id="cc3vd7f6" width="1154" height="693" border="888888" /><br> | <ggb_applet id="cc3vd7f6" width="1154" height="693" border="888888" /><br> | ||
Und nun bist du dran... | Und nun bist du dran... | ||
Zeile 148: | Zeile 163: | ||
Sprinteraufgabe: | Sprinteraufgabe: | ||
Konstruiere ein symmetrisches Trapez mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein symmetrisches Trapez bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte. | Konstruiere ein symmetrisches Trapez mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein symmetrisches Trapez bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte. | ||
<div class="grid"> | |||
<div class="width-1-3">{{Lösung versteckt|1=1.Zeichne die Punkte A,B und C beliebig.|2=1. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=2. Zeichne die Strecke f mit den Endpunkten A und B.|2=2. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=3. Zeichne die Strecke g mit den Endpunkte B und C.|2=3. Schritt|3=Verbergen}}</div> | |||
</div> | |||
<div class="grid"> | |||
<div class="width-1-3">{{Lösung versteckt|1=4. Zeichne die Mittelsenkrechte h(Symmetrieachse) der Strecke f (AB).|2=4. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=5. Zeichne eine parallele Gerade i zu f durch C.|2=5. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=6. Schnittpunkt D ist der Schnittpunkt von i und h.|2=6. Schritt|3=Verbergen}}</div> | |||
</div> | |||
<div class="grid"> | |||
<div class="width-1-3">{{Lösung versteckt|1=7. Zeichne einen Kreis c um D durch C.|2=7. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=8. Schnittpunkt F ist der Schnittpunkt der Geraden i mit c.|2=8. Schritt|3=Verbergen}}</div> | |||
<div class="width-1-3">{{Lösung versteckt|1=9. Vieleck ABCF|2=9. Schritt|3=Verbergen}}</div> | |||
</div> | |||
<ggb_applet id="pdkyayad" width="1154" height="693" border="888888" /><br> | <ggb_applet id="pdkyayad" width="1154" height="693" border="888888" /><br> | ||
Und nun bist du dran... | Und nun bist du dran... |
Version vom 12. November 2020, 13:30 Uhr
1) Vierecke und ihre Eigenschaften
Im folgenden werde ihr in arbeitsteiliger Gruppenarbeit die Eigenschaften verschiedener Vierecke untersuchen. Tragt eure Ergebnisse in euer Heft ein.
Untersucht die Vierecke auf ihre Eigenschaften bezogen auf:
- die Seiten (Länge und Lage)
- die Winkel
- die Symmetrie
- die Diagonalen
1.1) Quadrat
Zeichne ein Quadrat in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere ein Quadrat mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Quadrat bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Quadrat sichtbar ist und die Punkte und Strecken umbenennen.
Nun bist du dran...
1.2) Rechteck
Zeichne ein Rechteck in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere ein Rechteck mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Rechteck bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Rechteck sichtbar ist und die Punkte und Strecken umbenennen.
Und nun bist du dran...
1.3) Parallelogramm
Zeichne ein Parallelogramm in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere ein Parallelogramm mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Parallelogramm bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Parallelogramm sichtbar ist und die Punkte und Strecken umbenennen.
Und nun bist du dran...
1.4) Raute (Rhombus)
Zeichne eine Raute in dein Heft. Tipp: Zeichne zunächst die Diagonalen e und f und verbinde dann die Eckpunkte zu einer Raute. Zeichne die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere eine Raute mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben eine Raute bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.
Und nun bist du dran...
1.5) Symmetrisches Trapez
Im folgenden Applet kannst du Hilfen einblenden lassen.
Zeichne ein symmetrisches Trapez in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere ein symmetrisches Trapez mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein symmetrisches Trapez bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.
Und nun bist du dran...
1.6) allgemeines Trapez
Verschiebe nun im Applet den Punkt D und gib die Eigenschaften des allgemeinen Trapezes an.
Zeichne ein allgemeines Trapez in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
1.7) Drachenviereck (Deltoid)
Zeichne ein Drachenviereck (Deltoid) in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Vermischte Übungen
2) Haus der Vierecke
Du hast die besonderen Vierecke im 1. Kapitel kennengelernt. Diese besonderen Vierecke besitzen Symmetrien (sind also achsensymmetrisch oder punktsymmetrisch) und werden im Haus der Vierecke sortiert.
Dabei steht das allgemeine Viereck ohne Symmetrien ganz unten und von Ebene zu Ebene kommen mehr Symmetrien dazu.
Ganz oben steht das Quadrat, denn es hat die meisten Symmetrien.
Im Applet kannst du die Symmetrien einblenden lassen.