Benutzer:Buss-Haskert/Vierecke und Dreiecke/Winkelsumme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
K (Navigation ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
(NAvigation ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Navigation verstecken|[[Buss-Haskert/Vierecke und Dreiecke| Einstieg und Vorwissen]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften|1) Vierecke und ihre Eigensschaften <br> 2) Haus der Vierecke]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Winkelsumme|3) Winkelsumme im Viereck]]}} | {{Navigation verstecken|[[Buss-Haskert/Vierecke und Dreiecke| Einstieg und Vorwissen]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften|1) Vierecke und ihre Eigensschaften <br> 2) Haus der Vierecke]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Winkelsumme|3) Winkelsumme im Viereck]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt|4) Umfang und Flächeninhalt]]}} | ||
===3) Winkelsumme im Viereck=== | ===3) Winkelsumme im Viereck=== | ||
Version vom 4. Oktober 2020, 16:38 Uhr
3) Winkelsumme im Viereck
In jedem Viereck beträgt die Winkelsumme 360°()
Also gilt: + + + = 360°().
Du kannst das Grad-Zeichen ° auf dem iPad eingeben, indem du lange auf die Ziffer 0 drückst.
Nutze Eigenschaften der Winkel im symmetrischen Trapez: Benachbarte Winkel sind gleich groß. Also ist = 45°
Zeichne ein symmetrisches Trapez. Wo muss der Winkel 110° liegen? Schau eventuell die Skizze von Nr. 2 an.
ist ein Nebenwinkel zu 50°. Nebenwinkel ergänzen sich zu 180°
ist ein Nebenwinkel zu 60°. Nebenwinkel ergänzen sich zu 180°
ist ein Nebenwinkel zu 100°, ist ein Nebenwinkel zu 80°, Nebenwinkel ergänzen sich zu 180°
und sind Nebenwinkel, ist ein Scheitelwinkel zu 140°. Berechne mit der Winkelsumme.