Digitale Werkzeuge in der Schule/Basiswissen Analysis/Steckbriefaufgaben: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(8 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{Box |1=Info |2=In diesem Lernpfadkapitel lernst du '''Steckbriefaufgaben '''kennen. In Steckbriefaufgaben geht es darum, aus den Eigenschaften einer Funktion deren Funktionsterm und Funktionsgraphen herzuleiten. | {{Box |1=Info |2=In diesem Lernpfadkapitel lernst du '''Steckbriefaufgaben''' kennen. In Steckbriefaufgaben geht es darum, aus den Eigenschaften einer Funktion deren Funktionsterm und Funktionsgraphen herzuleiten. | ||
Damit übst du das ''Modellieren ''und ''Mathematisieren '', indem du mithilfe mathematischer Kenntnisse und Fertigkeiten Lösungen innerhalb mathematischer Modelle erarbeitest. Dazu ist das Lösen von ''Gleichungssystemen ''mit mehr als einer Variablen notwendig. Du stellst lineare Gleichungssysteme in Matrix-Vektor-Schreibweise dar, löst sie mithilfe geeigneter Verfahren und interpretierst ihre Lösungsmenge. | |||
* In Aufgaben, die ''<span style="color: #F19E4F">orange</span>'' gefärbt sind, kannst du '' | Wir empfehlen dir, dich bereits mit den Eigenschaften von Funktionen und der lokalen Änderungsrate beschäftigt zu haben, wenn du mit dieser Seite beginnst. | ||
* Aufgaben in ''<span style="color: #5E43A5">blauer</span>'' Farbe sind ''Aufgaben mittlerer Schwierigkeit''. | |||
* Und Aufgaben mit ''<span style="color: #89C64A"> | Bei den Aufgaben unterscheiden wir folgende Typen: | ||
* In Aufgaben, die '''<span style="color: #F19E4F">orange</span>''' gefärbt sind, kannst du '''grundlegende Kompetenzen''' wiederholen und vertiefen. | |||
* Aufgaben in '''<span style="color: #5E43A5">blauer</span>''' Farbe sind '''Aufgaben mittlerer Schwierigkeit'''. | |||
* Und Aufgaben mit '''<span style="color: #89C64A">grünem</span>''' Streifen sind '''Knobelaufgaben'''. | |||
* Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht. | * Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht. | ||
Viel Erfolg! | |||
|3=Kurzinfo}} | |||
==Das Einsetzungsverfahren== | ==Das Einsetzungsverfahren== | ||
Zeile 73: | Zeile 75: | ||
<math> | <math> | ||
\begin{array}{rlll} | \begin{array}{rlll} | ||
&II\quad&&& 18y &=& 6 &\mid | &II\quad&&& 18y &=& 6 &\mid :18 \\ | ||
&&&\Rightarrow& y &=& \frac{1}{3} \\ | &&&\Rightarrow& y &=& \frac{1}{3} \\ | ||
\end{array} | \end{array} | ||
Zeile 84: | Zeile 86: | ||
&I\quad& && &7x& + &3 \cdot \frac{1}{3}& &=& &50& \mid \textrm{umformen} \\ | &I\quad& && &7x& + &3 \cdot \frac{1}{3}& &=& &50& \mid \textrm{umformen} \\ | ||
&&&\Rightarrow& &7x& + &1& &=& &50& \mid -1 \\ | &&&\Rightarrow& &7x& + &1& &=& &50& \mid -1 \\ | ||
&&&\Rightarrow& && &7x& &=& &49& \mid | &&&\Rightarrow& && &7x& &=& &49& \mid :7 \\ | ||
&&&\Rightarrow& && &x& &=& &7& \mid | &&&\Rightarrow& && &x& &=& &7& \mid :7 \\ | ||
\end{array} | \end{array} | ||
</math> | </math> | ||
|Lösungsweg |Lösung ausblenden}} | |Lösungsweg |Lösung ausblenden}} | ||
Zeile 106: | Zeile 106: | ||
{{Lösung versteckt| Stelle <math>I</math> nach <math>x</math> um und setzte dies in Gleichung <math>II</math>, um <math>y</math> in <math>II</math> zu eliminieren. | Tipp| Tipp ausblenden}} | {{Lösung versteckt| Stelle <math>I</math> nach <math>x</math> um und setzte dies in Gleichung <math>II</math>, um <math>y</math> in <math>II</math> zu eliminieren. | Tipp| Tipp ausblenden}} | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Zeile 114: | Zeile 113: | ||
\begin{array}{rlll} | \begin{array}{rlll} | ||
&I\quad& && &3x& + &6y& &=& &6& && \mid -6y\\ | &I\quad& && &3x& + &6y& &=& &6& && \mid -6y\\ | ||
&&&\Rightarrow& &3x& && &=& &6& - &6y& \mid | &&&\Rightarrow& &3x& && &=& &6& - &6y& \mid :3\\ | ||
&&&\Rightarrow& &x& && &=& &2& - &2y& \\ | &&&\Rightarrow& &x& && &=& &2& - &2y& \\ | ||
\end{array} | \end{array} | ||
Zeile 123: | Zeile 122: | ||
<math> | <math> | ||
\begin{array}{rlll} | \begin{array}{rlll} | ||
&II\quad& && &2 | &II\quad& && &-2 \cdot (2-2y)& + &12y& &=& &0& \mid \text{umformen}\\ | ||
&&&\Rightarrow& &-4 | &&&\Rightarrow& &-4 + 4y& + &12y& &=& &0& \mid \text{umformen}\\ | ||
&&&\Rightarrow& &-4& + &16y& &=& &0& \mid +4 \\ | &&&\Rightarrow& &-4& + &16y& &=& &0& \mid +4 \\ | ||
&&&\Rightarrow& && &16y& &=& &4& \mid | &&&\Rightarrow& && &16y& &=& &4& \mid :16\\ | ||
&&&\Rightarrow& && &y& &=& &\frac{1}{4}&\\ | &&&\Rightarrow& && &y& &=& &\frac{1}{4}&\\ | ||
\end{array} | \end{array} | ||
Zeile 140: | Zeile 139: | ||
&I\quad& && &3x& + &6 \cdot (\frac{1}{4})& &=& &6& \mid \text{umformen}\\ | &I\quad& && &3x& + &6 \cdot (\frac{1}{4})& &=& &6& \mid \text{umformen}\\ | ||
&&&\Rightarrow& &3x& + &\frac{6}{4}& &=& &6& \mid - \frac{6}{4}\\ | &&&\Rightarrow& &3x& + &\frac{6}{4}& &=& &6& \mid - \frac{6}{4}\\ | ||
&&&\Rightarrow& &3x& && &=& &\frac{18}{4}& \mid | &&&\Rightarrow& &3x& && &=& &\frac{18}{4}& \mid :3 \\ | ||
&&&\Rightarrow& &x& && &=& &\frac{1}{4}& \\ | &&&\Rightarrow& &x& && &=& &\frac{1}{4}& \\ | ||
\end{array} | \end{array} | ||
Zeile 148: | Zeile 147: | ||
<math> x=\frac{3}{2} </math>, <math>y=\frac{1}{4}</math>|Lösungsweg |Lösung ausblenden}} | <math> x=\frac{3}{2} </math>, <math>y=\frac{1}{4}</math>|Lösungsweg |Lösung ausblenden}} | ||
{{Lösung versteckt|<math> x=\frac{3}{2} </math>,<math>y=\frac{1}{4}</math>|Lösung |Lösung ausblenden}} | {{Lösung versteckt|<math> x=\frac{3}{2}</math>, <math>y=\frac{1}{4}</math>|Lösung |Lösung ausblenden}} | ||
|Farbe= #F19E4F|3= Arbeitsmethode}} | |Farbe= #F19E4F|3= Arbeitsmethode}} | ||
Zeile 269: | Zeile 268: | ||
<math>p(t) = -5t^2 + 30t</math> | <math>p(t) = -5t^2 + 30t</math> | ||
|2=Möglicher Lösungsweg|3=Möglichen Lösungsweg ausblenden}} | |2=Möglicher Lösungsweg|3=Möglichen Lösungsweg ausblenden}} | ||
|2=Lösung | |2=Lösung|3=Lösung ausblenden}} | ||
Zeile 278: | Zeile 277: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Notwendige Bedingung für Extremstellen: <math>p'(t) = 0</math> \\ | |||
Hinreichende Bedingung für Extremstellen: <math>p'(t) = 0</math> und <math>p''(t) < 0</math> \\ | |||
</math> | |||
|2=Tipp 2 |3=Tipp 2 ausblenden}} | |2=Tipp 2 |3=Tipp 2 ausblenden}} | ||
Zeile 375: | Zeile 370: | ||
In Matrix-Vektor-Schreibweise: | In Matrix-Vektor-Schreibweise: | ||
<math>\begin{pmatrix} 3 & 5 | <math>\begin{pmatrix} 3 & 5 & 4 & 6 \\ 0 & -3 & 1 & 15 \\ 0 & -1 & -5 & -9\end{pmatrix}</math> | ||
Zeile 428: | Zeile 423: | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
1. Gleichung <math> I | 1. Gleichung <math> I \cdot (-2) </math> von Gleichung <math> II </math> abziehen. | ||
2. Gleichung <math> I | 2. Gleichung <math> I \cdot (4) </math> von Gleichung <math> III </math> abziehen. | ||
3. Gleichung <math> II | 3. Gleichung <math> II \cdot ( \frac{46}{31} )</math> von Gleichung <math> III </math> abziehen. | ||
Deine Gleichungen sollten dann folgendermaßen aussehen: | Deine Gleichungen sollten dann folgendermaßen aussehen: | ||
Zeile 484: | Zeile 479: | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
1. Gleichung <math> I | 1. Gleichung <math> I \cdot (-2) </math> von Gleichung <math> II </math> abziehen. | ||
2. Gleichung <math> I | 2. Gleichung <math> I \cdot (-3)</math> von Gleichung <math> III </math> abziehen. | ||
3. Gleichung <math> II | 3. Gleichung <math> II \cdot ( \frac{-16}{3} ) </math> von Gleichung <math>III </math> abziehen. | ||
Deine Gleichungen sollten dann folgendermaßen aussehen: | Deine Gleichungen sollten dann folgendermaßen aussehen: | ||
Zeile 501: | Zeile 496: | ||
</math> | </math> | ||
4. Gleichung <math> II | 4. Gleichung <math> II \cdot ( \frac{2}{3} ) </math> zu Gleichung <math>IV</math> addieren. | ||
5. Gleichung <math> III | 5. Gleichung <math> III \cdot ( \frac{1}{13} ) </math> von Gleichung <math>IV </math> abziehen. | ||
Deine Gleichungen sollten dann folgendermaßen aussehen: | Deine Gleichungen sollten dann folgendermaßen aussehen: | ||
Zeile 543: | Zeile 538: | ||
*Im Dezember des Vorjahres befinden sich noch keine infizierten Personen in Deutschland | *Im Dezember des Vorjahres befinden sich noch keine infizierten Personen in Deutschland | ||
*Im April leben 2.000.000 infizierte Personen in Deutschland | *Im April leben 2.000.000 infizierte Personen in Deutschland | ||
*Im August | *Im August steigt die Anzahl infizierter Personen in Deutschland auf 4.000.000 an | ||
*Durch entsprechende Maßnahmen ist die Zahl infizierter Personen ab August rückläufig | *Durch entsprechende Maßnahmen ist die Zahl infizierter Personen ab August rückläufig | ||
Zeile 710: | Zeile 705: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Notwendige Bedingung für Wendestellen: <math>i''(t) = 0</math> | |||
Hinreichende Bedingung für Wendestellen: <math>i''(t) = 0</math> und <math>i'''(t) \neq 0</math> | |||
</math> | |||
|2=Tipp 2 |3=Tipp 2 ausblenden}} | |2=Tipp 2 |3=Tipp 2 ausblenden}} | ||
Aktuelle Version vom 12. Juni 2020, 22:46 Uhr
Das Einsetzungsverfahren
Aufgaben zum Einsetzungsverfahren
Quadratische Funktionen im Sachzusammenhang
Das Gauß-Verfahren