Digitale Werkzeuge in der Schule/Basiswissen Analysis/Steckbriefaufgaben: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(87 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Box |1=Info |2=In diesem Lernpfadkapitel lernst du '''Steckbriefaufgaben '''kennen. In Steckbriefaufgaben geht es darum, aus den Eigenschaften einer Funktion deren Funktionsterm und Funktionsgraphen herzuleiten.  
{{Box |1=Info |2=In diesem Lernpfadkapitel lernst du '''Steckbriefaufgaben''' kennen. In Steckbriefaufgaben geht es darum, aus den Eigenschaften einer Funktion deren Funktionsterm und Funktionsgraphen herzuleiten.  


Damit übst du das ''Modellieren ''und ''Mathematisieren '', indem du mithilfe mathematischer Kenntnisse und Fertigkeiten Lösungen innerhalb mathematischer Modelle erarbeitest. Dazu ist das Lösen von ''Gleichungssystemen ''mit mehr als einer Variablen notwendig. Du stellst lineare Gleichungssysteme in Matrix-Vektor-Schreibweise dar, löst sie mithilfe geeigneter Verfahren und interpretierst ihre Lösungsmenge. 
Wir empfehlen dir, dich bereits mit den Eigenschaften von Funktionen und der lokalen Änderungsrate beschäftigt zu haben, wenn du mit dieser Seite beginnst.


* In Aufgaben, die ''<span style="color: #F19E4F">orange</span>'' gefärbt sind, kannst du ''Gelerntes wiederholen und vertiefen''.
Bei den Aufgaben unterscheiden wir folgende Typen:
* Aufgaben in ''<span style="color: #5E43A5">blauer</span>'' Farbe sind ''Aufgaben mittlerer Schwierigkeit''.
* In Aufgaben, die '''<span style="color: #F19E4F">orange</span>''' gefärbt sind, kannst du '''grundlegende Kompetenzen''' wiederholen und vertiefen.
* Und Aufgaben mit ''<span style="color: #89C64A">grüner</span>'' Hinterlegung sind ''Knobelaufgaben''.
* Aufgaben in '''<span style="color: #5E43A5">blauer</span>''' Farbe sind '''Aufgaben mittlerer Schwierigkeit'''.
* Und Aufgaben mit '''<span style="color: #89C64A">grünem</span>''' Streifen sind '''Knobelaufgaben'''.
* Aufgaben, die mit einem &#x2B50; gekennzeichnet sind, sind nur für den LK gedacht.
* Aufgaben, die mit einem &#x2B50; gekennzeichnet sind, sind nur für den LK gedacht.


 
Viel Erfolg!
Damit übst du das ''Modellieren ''und ''Mathematisieren '', indem du mithilfe mathematischer Kenntnisse und Fertigkeiten Lösungen innerhalb mathematischer Modelle erarbeitest. Dazu ist das Lösen von ''Gleichungssystemen ''mit mehr als einer Variablen notwendig. Du stellst lineare Gleichungssysteme in Matrix-Vektor-Schreibweise dar, löst sie mithilfe geeigneter Verfahren und interpretierst ihre Lösungsmenge. 
|3=Kurzinfo}}
 
Wir empfehlen dir, dich bereits mit den Eigenschaften von Funktionen und der lokalen Änderungsrate beschäftigt zu haben, wenn du mit dieser Seite beginnst.|3=Kurzinfo}}


==Das Einsetzungsverfahren==
==Das Einsetzungsverfahren==
Zeile 51: Zeile 53:
</math>
</math>


Du verwendest dieses Verfahren bei '''Gleichungssystemen mit 2 Variablen'''. Dabei stellst du die ''eine Gleichung nach einer Variable um'' und ''setzt diese dann in die andere Gleichung ein''. Nun kannst du vorgehen wie bei einer Gleichung mit nur einer Variable.|
Du verwendest dieses Verfahren bei '''Gleichungssystemen mit 2 Variablen'''. Dabei stellst du die ''eine Gleichung nach einer Variable um'' und ''setzt diese dann in die andere Gleichung ein''. Nun kannst du vorgehen wie bei einer Gleichung mit nur einer Variable.


|Merksatz}}
|Merksatz}}
Zeile 57: Zeile 59:


===Aufgaben zum Einsetzungsverfahren===
===Aufgaben zum Einsetzungsverfahren===
{{Box|1= <span style="color: #F19E4F">Gleichungssysteme mit dem Einsetzungsverfahren lösen</span>|2= Aufgabe a) ist etwas einfacher als Aufgabe b).
{{Box|1=Aufgabe 1: Gleichungssysteme mit dem Einsetzungsverfahren lösen|2= a)
 
a)


<math>
<math>
Zeile 68: Zeile 68:
</math>
</math>


{{Lösung versteckt| <math> x=7</math>,<math>y=\frac{1}{3}</math>|Lösung |Lösung ausblenden}}
{{Lösung versteckt|
 
1. Wir stellen nach y um, Gleichung <math> II </math> eignet sich dafür am besten.
 
 
<math>
\begin{array}{rlll}
&II\quad&&& 18y  &=& 6 &\mid :18  \\
&&&\Rightarrow& y &=& \frac{1}{3} \\
\end{array}
</math>
 
2. Wir setzen <math> y=\frac{1}{3} </math> in Gleichung <math> I </math> ein:
 
<math>
\begin{array}{rlll}
&I\quad& && &7x& + &3 \cdot \frac{1}{3}& &=& &50& \mid \textrm{umformen} \\
&&&\Rightarrow& &7x&  + &1& &=& &50& \mid -1 \\
&&&\Rightarrow& && &7x&  &=& &49& \mid :7 \\
&&&\Rightarrow& && &x&  &=& &7& \mid :7 \\
\end{array}
</math>
 
|Lösungsweg |Lösung ausblenden}}
 
{{Lösung versteckt| <math> x=7</math>, <math>y=\frac{1}{3}</math>|Lösung |Lösung ausblenden}}




Zeile 80: Zeile 105:
</math>
</math>


{{Lösung versteckt| Stelle I nach <math>y</math> um und setzte diese in II ein, um <math>y</math> zu eliminieren. | Tipp| Tipp ausblenden}}
{{Lösung versteckt| Stelle <math>I</math> nach <math>x</math> um und setzte dies in Gleichung <math>II</math>, um <math>y</math> in <math>II</math> zu eliminieren. | Tipp| Tipp ausblenden}}


{{Lösung versteckt| <math> x=\frac{3}{2} </math>,<math>y=\frac{1}{4}</math>|Lösung |Lösung ausblenden}}
{{Lösung versteckt|
1. Wir stellen <math>I</math> nach <math>x</math> um.
 
<math>
\begin{array}{rlll}
&I\quad& && &3x& + &6y& &=& &6& && \mid -6y\\
&&&\Rightarrow& &3x& && &=& &6& - &6y& \mid :3\\
&&&\Rightarrow& &x& && &=& &2& - &2y& \\
\end{array}
</math>
 
2. Wir setzen <math>x</math> nun in <math>II</math> ein und lösen nach <math>y</math> auf.
 
<math>
\begin{array}{rlll}
&II\quad& && &-2 \cdot (2-2y)& + &12y& &=& &0& \mid \text{umformen}\\
&&&\Rightarrow& &-4 + 4y& + &12y& &=& &0& \mid \text{umformen}\\
&&&\Rightarrow& &-4& + &16y& &=& &0& \mid +4 \\
&&&\Rightarrow& &&  &16y& &=& &4& \mid :16\\
&&&\Rightarrow& &&  &y& &=& &\frac{1}{4}&\\
\end{array}
</math>
 
3. Wir setzen <math>y=\frac{1}{4}</math> nun in Gleichung <math>I</math> ein und lösen nach <math>x</math> auf.
 
 
 
 
<math>
\begin{array}{rlll}
&I\quad& && &3x& + &6 \cdot (\frac{1}{4})& &=& &6& \mid \text{umformen}\\
&&&\Rightarrow& &3x& + &\frac{6}{4}& &=& &6&  \mid - \frac{6}{4}\\
&&&\Rightarrow& &3x& &&  &=& &\frac{18}{4}&  \mid  :3 \\
&&&\Rightarrow& &x& && &=& &\frac{1}{4}& \\
\end{array}
</math>
 
<math> x=\frac{3}{2} </math>, <math>y=\frac{1}{4}</math>|Lösungsweg |Lösung ausblenden}}
 
{{Lösung versteckt|<math> x=\frac{3}{2}</math>, <math>y=\frac{1}{4}</math>|Lösung |Lösung ausblenden}}


|Farbe= #F19E4F|3= Arbeitsmethode}}
|Farbe= #F19E4F|3= Arbeitsmethode}}
Zeile 88: Zeile 153:
===Quadratische Funktionen im Sachzusammenhang===
===Quadratische Funktionen im Sachzusammenhang===


{{Box|1= <span style="color: #5E43A5">Elternsprechtag</span>|2=
{{Box|1=Aufgabe 2: Elternsprechtag|2=


[[Datei:Parkplatz Elternsprechtag.jpg|rechts|rahmenlos|300x300px]]
[[Datei:Parkplatz Elternsprechtag.jpg|rechts|rahmenlos|300x300px]]
Zeile 99: Zeile 164:




a) Die Anzahl belegter Parkplätze lässt sich in Abhängigkeit zur Uhrzeit (mit <math>t</math> in Stunden, wobei <math>t = 0</math> 12 Uhr repräsentiert) durch eine quadratische Funktion der Form <math>f(t) = at^2 + bt + c</math> beschreiben.  
a) Die Anzahl belegter Parkplätze lässt sich in Abhängigkeit zur Uhrzeit (mit <math>t</math> in Stunden, wobei <math>t = 0</math> 12 Uhr repräsentiert) durch eine quadratische Funktion der Form <math>p(t) = at^2 + bt + c</math> beschreiben.  
Löse zunächst den unteren Lückentext.
Löse zunächst den unteren Lückentext.




{{LearningApp|app=p2eaqwfgj20|width=100%|height=1000px}}
{{LearningApp|app=p2eaqwfgj20|width=100%|height=400px}}






b) Stelle mit Hilfe von Aufgabe a) die Gleichung von <math>f</math> auf. Mit unterem Applet kannst du dein Ergebnis selbstständig überprüfen.
b) Stelle mit Hilfe von Aufgabe a) die Gleichung von <math>p</math> auf. Mit unterem Applet kannst du dein Ergebnis selbstständig überprüfen.




<ggb_applet id="bkhvjgfz" width="100%" height="100%" />
<ggb_applet id="uqa6bysa" width="1536" height="700" border="888888" sdz="true" />




{{Lösung versteckt|1=
{{Lösung versteckt|1=
<math>f(t) = -5t^2 + 30t</math>
<math>p(t) = -5t^2 + 30t</math>


{{Lösung versteckt|1=
{{Lösung versteckt|1=
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
f(t) &=& at^2 + bt + c \\
p(t) &=& at^2 + bt + c \\
\end{array}
\end{array}
</math>
</math>
Zeile 126: Zeile 191:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
&&f(0) &=& 0 \\
&&p(0) &=& 0 \\
&\Leftrightarrow& a \cdot 0^2 + b \cdot 0 + c &=& 0 \\
&\Leftrightarrow& a \cdot 0^2 + b \cdot 0 + c &=& 0 \\
&\Leftrightarrow& c &=& 0 \\
&\Leftrightarrow& c &=& 0 \\
Zeile 134: Zeile 199:
<br /><br />  
<br /><br />  
<math>
<math>
\Rightarrow f(t) = at^2 + bt
\Rightarrow p(t) = at^2 + bt
</math>
</math>
<br /><br />
<br /><br />
Zeile 140: Zeile 205:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
&&f(1) &=& 25 \\
&&p(1) &=& 25 \\
&\Leftrightarrow& a \cdot 1^2 + b \cdot 1 &=& 25 \\
&\Leftrightarrow& a \cdot 1^2 + b \cdot 1 &=& 25 \\
&\Leftrightarrow& a + b &=& 25 \\
&\Leftrightarrow& a + b &=& 25 \\
Zeile 149: Zeile 214:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
&&f(6) &=& 0 \\
&&p(6) &=& 0 \\
&\Leftrightarrow& a \cdot 6^2 + b \cdot 6 &=& 0 \\
&\Leftrightarrow& a \cdot 6^2 + b \cdot 6 &=& 0 \\
&\Leftrightarrow& 36a + 6b &=& 0 \\
&\Leftrightarrow& 36a + 6b &=& 0 \\
Zeile 201: Zeile 266:
und damit insgesamt
und damit insgesamt
<br /><br />
<br /><br />
<math>f(t) = -5t^2 + 30t</math>
<math>p(t) = -5t^2 + 30t</math>
|2=Möglicher Lösungsweg|3=Möglichen Lösungsweg ausblenden}}
|2=Möglicher Lösungsweg|3=Möglichen Lösungsweg ausblenden}}
|2=Lösung 2 (Funktionsgleichung)|3=Lösung 2 (Funktionsgleichung) ausblenden}}  
|2=Lösung|3=Lösung ausblenden}}  




Zeile 212: Zeile 277:


{{Lösung versteckt|1=
{{Lösung versteckt|1=
<math>
Notwendige Bedingung für Extremstellen: <math>p'(t) = 0</math> \\
\begin{array}{rlll}
Hinreichende Bedingung für Extremstellen: <math>p'(t) = 0</math> und <math>p''(t) < 0</math> \\
&\textrm{notwendige} \, \textrm{Bedingung:}& f'(t) &=& 0 \\
&\textrm{hinreichende} \, \textrm{Bedingung:}& f''(t) &<& 0 \\
\end{array}
</math>
|2=Tipp 2 |3=Tipp 2 ausblenden}}
|2=Tipp 2 |3=Tipp 2 ausblenden}}


{{Lösung versteckt|1=
{{Lösung versteckt|1=
Der Graph der Funktion <math>f</math> hat den '''Hochpunkt <math>(3 | 45)</math>'''. Die maximale Anzahl belegter Parkplätze ist also um 15 Uhr nachzuweisen. Zu der Zeit sind 45 Parkplätze belegt, sodass die vorhandenen 50 Parkplätze ausreichen.
Der Graph der Funktion <math>p</math> hat den '''Hochpunkt <math>(3 | 45)</math>'''. Die maximale Anzahl belegter Parkplätze ist also um 15 Uhr nachzuweisen. Zu der Zeit sind 45 Parkplätze belegt, sodass die vorhandenen 50 Parkplätze ausreichen.


{{Lösung versteckt|1=
{{Lösung versteckt|1=
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
f(t) &=& -5t^2 + 30t \\
p(t) &=& -5t^2 + 30t \\
f'(t) &=& -10t + 30 \\
p'(t) &=& -10t + 30 \\
f''(t) &=& -10 \\
p''(t) &=& -10 \\
\end{array}
\end{array}
</math>
</math>
Zeile 235: Zeile 296:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
\textrm{Notwendige Bedingung:}
\text{Notwendige Bedingung für Extremstellen:}
&& f'(t) &=& 0 \\
&& p'(t) &=& 0 \\
&\Leftrightarrow& -10t + 30 &=& 0 &\mid + 10t\\
&\Leftrightarrow& -10t + 30 &=& 0 &\mid + 10t\\
&\Leftrightarrow& 10t &=& 30 &\mid : 10 \\
&\Leftrightarrow& 10t &=& 30 &\mid : 10 \\
Zeile 246: Zeile 307:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
\textrm{Hinreichende Bedingung:}
\text{Hinreichende Bedingung für Extremstellen:}
&&f'(3) &=& 0 &&\textrm{und} \\
&&p'(3) &=& 0 &&\textrm{und} \\
&&f''(3) &=& -10 &<& 0
&&p''(3) &=& -10 &<& 0
\end{array}
\end{array}
</math>
</math>
<br /><br />
<br /><br />
<br /><br />
<br /><br />
<math>f(3)=-5 \cdot 3^2 + 30 \cdot 3 = 45</math>
<math>p(3)=-5 \cdot 3^2 + 30 \cdot 3 = 45</math>
|2=Möglicher Lösungsweg|3=Möglichen Lösungsweg ausblenden}}
|2=Möglicher Lösungsweg|3=Möglichen Lösungsweg ausblenden}}


Zeile 260: Zeile 321:




d) Skizziere nun den Graphen von <math>f</math> anhand der Informationen auf einem Blatt. Beachte hierbei die geeignete Beschriftung der Koordinatenachsen. Für welchen Zeitraum ist dieser Graph als mathematische Modellierung der Parkplatzsituation geeignet?
d) Skizziere nun den Graphen von <math>p</math> anhand der Informationen auf einem Blatt. Beachte hierbei die geeignete Beschriftung der Koordinatenachsen. Für welchen Zeitraum ist dieser Graph als mathematische Modellierung der Parkplatzsituation geeignet?


{{Lösung versteckt|1=[[Datei:Graph 1c.png|zentriert|rahmenlos|600x600px]]
{{Lösung versteckt|1=[[Datei:Graph 1c.png|zentriert|rahmenlos|600x600px]]
<br /><br />
<br /><br />
Da die Funktionswerte von <math>f</math> für <math>t < 0</math> und <math>t > 6</math> negativ sind, ist der Graph nur für <math>0 \leq t \leq 6</math> als mathematische Modellierung der Parkplatzsituation geeignet.|2=Lösung|3=Lösung ausblenden}}
Da die Funktionswerte von <math>p</math> für <math>t < 0</math> und <math>t > 6</math> negativ sind, ist der Graph nur für <math>0 \leq t \leq 6</math> als mathematische Modellierung der Parkplatzsituation geeignet.|2=Lösung|3=Lösung ausblenden}}


|Farbe= #5E43A5|3= Arbeitsmethode}}
|Farbe= #5E43A5|3= Arbeitsmethode}}


==Das Gauß-Verfahren==
==Das Gauß-Verfahren==
{{Box|Das Gauß-Verfahren|Das Gauß-Verfahren verwendest du bei Gleichungssystemen mit 2 oder mehr Variablen. Dabei versuchst du  die Gleichungen so zu vereinfachen, dass eine obere Dreiecksmatix entsteht.  
{{Box|Das Gauß-Verfahren|Das Gauß-Verfahren kann bei Gleichungssystemen mit zwei oder mehr Variablen verwendet werden. Dabei versuchst du  die Gleichungen so zu vereinfachen, dass eine obere Dreiecksmatix entsteht.  


Schaue dir folgende Gleichungen an:
Schaue dir folgende Gleichungen an:
Zeile 309: Zeile 370:
In Matrix-Vektor-Schreibweise:
In Matrix-Vektor-Schreibweise:


<math>\begin{pmatrix} 3 & 5 & 4& 6 \\ 0 & -3 & 1 & 15 \\ 0 & -1 & -5 & -9\end{pmatrix}</math>
<math>\begin{pmatrix} 3 & 5 & 4 & 6 \\ 0 & -3 & 1 & 15 \\ 0 & -1 & -5 & -9\end{pmatrix}</math>




Zeile 334: Zeile 395:
<math>z=2</math>, <math>y=-1</math>, <math>x=1</math>
<math>z=2</math>, <math>y=-1</math>, <math>x=1</math>


Du verwendest dieses Verfahren bei '''Gleichungssystemen mit 2 oder mehr Variablen'''. Dabei stellst du die Gleichungen so um, das in einer Gleichung nur eine Variable, in der zweiten Gleichung zwei Variablen und in der dritten Gleichung alle drei Variablen vorkommen. Das bezeichnet man auch als ''obere '''Dreiecksmatrix'''''. Nun kannst du mit der ersten Gleichung so vorgehen wie bei einer Gleichung mit nur einer Variable und die Lösung dann in die zweite Gleichung einsetzen. Die Lösung dieser Gleichung setzt du dann in die letzte Gleichung ein. Bei vier Gleichungen mit vier Variablen gehst du analog vor.|Merke}}
Du verwendest dieses Verfahren bei '''Gleichungssystemen mit zwei oder mehr Variablen'''. Dabei stellst du die Gleichungen so um, das in einer Gleichung nur eine Variable, in der zweiten Gleichung zwei Variablen und in der dritten Gleichung alle drei Variablen vorkommen. Das bezeichnet man auch als ''obere '''Dreiecksmatrix'''''. Nun kannst du mit der ersten Gleichung so vorgehen wie bei einer Gleichung mit nur einer Variable und die Lösung dann in die zweite Gleichung einsetzen. Die Lösung dieser Gleichung setzt du dann in die letzte Gleichung ein. Bei vier Gleichungen mit vier Variablen gehst du analog vor.|Merksatz}}
 
 
===Aufgaben zum Gauß-Verfahren===
 
{{Box|1=Aufgabe 3: Gleichungssysteme mit dem Gauß-Verfahren lösen|2= a)


<math>
\begin{array}{rlll}
&I\quad& &1x& + &12y& + &6z& &=& &-2&\\
&II\quad& &-2x& + &7y& + &18z& &=& &24{,}5& \\
&III\quad& &4x& + &2y& + &24z& &=& &-31& \\
\end{array}
</math>
{{Lösung versteckt| Eliminiere zuerst die <math>x</math>-Variable in der zweiten Zeile.| Tipp 1| Tipp 1 ausblenden}}
{{Lösung versteckt| Deine Gleichungen sollten am Ende folgende Form haben
<math>
\begin{array}{rlll}
&I\quad& &1x& + &12y& + &6z& &=& &-2&\\
&II\quad& && &31y& + &30z& &=& &\frac{41}{2}& \\
&III\quad& && &&  &\frac{1380}{31}z& &=& &\frac{230}{31}& \\
\end{array}
</math> | Tipp 2| Tipp 2 ausblenden}}


{{Lösung versteckt|
1. Gleichung <math> I \cdot (-2) </math> von Gleichung <math> II </math> abziehen.


===Aufgaben zum Gauß-Verfahren===
2. Gleichung <math> I \cdot (4) </math> von Gleichung <math> III </math> abziehen.


{{Box|1= <span style="color: #F19E4F">Gleichungssysteme mit dem Gauß-Verfahren lösen</span>|2= Die Schwierigkeit der Aufgaben steigt von oben nach unten.
3. Gleichung <math>  II \cdot ( \frac{46}{31} )</math> von Gleichung <math>  III </math> abziehen.  


a)
Deine Gleichungen sollten dann folgendermaßen aussehen:


<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
&I\quad& &1x& + &12y& + &6z& &=& &-2&\\
&I\quad& &1x& + &12y& + &6z& &=& &-2&\\
&II\quad& &-2x& + &7y& + &18z& &=& &24,5& \\
&II\quad& && + &31y& + &30z& &=& &\frac{41}{2}& \\
&III\quad& &4x& + &2y& + &24z& &=& &-31& \\
&III\quad& && && &\frac{1380}{31}z& &=& &\frac{230}{31}& \\
\end{array}
\end{array}
</math>
</math>


{{Lösung versteckt| Schreibe die Gleichungen in die Matrix-Vektor-Schreibweise um.| Tipp 1| Tipp 1 ausblenden}}
4. <math> z </math> aus der Gleichung <math> III </math> berechnen.
 
5. <math> z </math> in Gleichung <math> II </math> einsetzen und nach <math> y </math> umstellen, um <math> y </math> zu erhalten.


{{Lösung versteckt| Eliminiere zuerst die <math>x</math>-Variable in der zweiten Zeile.| Tipp 2| Tipp 2 ausblenden}}
6.<math> y </math> und <math> z</math> in Gleichung <math>I </math> einsetzen und nach <math> x </math> umstellen, um <math> x </math> zu erhalten.  


{{Lösung versteckt| Deine Matrix sollte in folgende Form umgeschrieben werden. <math>\begin{pmatrix} a & b & c & d \\ 0 & e & f & g \\ 0 & 0 & h & i \end{pmatrix}</math>.| Tipp 3| Tipp 3 ausblenden}}
Endgültige Lösung:


{{Lösung versteckt| <math> x=-9 </math>,<math>y=7</math>, <math> z=\frac{1}{6}</math> |Lösung |Lösung ausblenden}}
<math> x=-9 </math>, <math>y=\frac{1}{2}</math>, <math> z=\frac{1}{6}</math>  
 
|Lösung |Lösung ausblenden}}




Zeile 365: Zeile 456:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
&I\quad& &3x& + &4y& - &5z& + &6v& &=& &-7,5&\\
&I\quad& &3x& + &4y& - &5z& + &6v& &=& &-7{,}5&\\
&II\quad& &6x& + &5y& - &6z& + &5v& &=& &-7,5& \\
&II\quad& &6x& + &5y& - &6z& + &5v& &=& &-7{,}5& \\
&III\quad& &9x& - &4y& + &2z& + &3v& &=& &69& \\
&III\quad& &9x& - &4y& + &2z& + &3v& &=& &69& \\
&IV\quad& && &2y& - &3z& + &1v& &=& &-14,5&
&IV\quad& && &2y& - &3z& + &1v& &=& &-14{,}5&
\end{array}
\end{array}
</math>
</math>


{{Lösung versteckt| Schreibe die Gleichungen in die Matrix-Vektor-Schreibweise um.| Tipp 1| Tipp 1 ausblenden}}


{{Lösung versteckt| Eliminiere zuerst den <math>x</math>-Wert in Gleichung <math>II</math>.| Tipp 2| Tipp 2 ausblenden}}
{{Lösung versteckt| Eliminiere zuerst den <math>x</math>-Wert in Gleichung <math>II</math>.| Tipp 1| Tipp 1 ausblenden}}


{{Lösung versteckt| Die Matrix sollte in eine obere rechte Dreiecksmatrix umgeschrieben werden. | Tipp 3| Tipp 3 ausblenden}}
{{Lösung versteckt| Deine Gleichungen sollten am Ende folgende Form haben:
<math>
\begin{array}{rlll}
&I\quad& &3x& + &4y& - &5z& + &6v& &=& &-\frac{15}{2}&\\
&II\quad& && - &3y& + &4z& + &-7v& &=& &-\frac{45}{2} \\
&III\quad& &&  && - &\frac{13}{3}z& + &\frac{67}{3}v& &=& &\frac{333}{2}& \\
&IV\quad& &&  &&  && - &\frac{70}{13}v& &=& &-\frac{550}{13}&
\end{array}
</math>
 
| Tipp 2| Tipp 2 ausblenden}}
 
{{Lösung versteckt|
1. Gleichung <math> I \cdot (-2) </math> von Gleichung <math> II </math> abziehen.
 
2. Gleichung <math> I \cdot (-3)</math> von Gleichung <math> III </math> abziehen.


{{Lösung versteckt| <math> x=\frac{7}{2}</math>,<math>y=-7</math>, <math> z=1 </math>, <math> v=\frac{5}{2} </math> |Lösung |Lösung ausblenden}}
3. Gleichung <math> II \cdot ( \frac{-16}{3} ) </math> von Gleichung <math>III </math> abziehen.
 
Deine Gleichungen sollten dann folgendermaßen aussehen:
 
<math>
\begin{array}{rlll}
&I\quad& &3x& + &4y& - &5z& + &6v& &=& &-\frac{15}{2}&\\
&II\quad& && - &3y& + &4z& + &-7v& &=& &-\frac{45}{2} \\
&III\quad& &&  && - &\frac{13}{3}z& + &\frac{67}{3}v& &=& &\frac{333}{2}& \\
&IV\quad& &&  &2y& - &3z& + &1v& &=& &-\frac{29}{2}&
\end{array}
</math>
 
4. Gleichung <math> II \cdot ( \frac{2}{3} ) </math> zu Gleichung <math>IV</math> addieren.
 
5. Gleichung <math> III \cdot ( \frac{1}{13} ) </math> von Gleichung <math>IV </math> abziehen.
 
Deine Gleichungen sollten dann folgendermaßen aussehen:
 
<math>
\begin{array}{rlll}
&I\quad& &3x& + &4y& - &5z& + &6v& &=& &-\frac{15}{2}&\\
&II\quad& && - &3y& + &4z& + &-7v& &=& &-\frac{45}{2} \\
&III\quad& &&  && - &\frac{13}{3}z& + &\frac{67}{3}v& &=& &\frac{333}{2}& \\
&IV\quad& &&  &&  && - &\frac{70}{13}v& &=& &-\frac{550}{13}&
\end{array}
</math>
 
 
6. <math> v </math> aus Gleichung <math>IV</math> berechnen.
 
7. <math> v </math> in Gleichung <math>III </math> einsetzen und nach <math> z </math> auflösen.
 
8. <math> v </math> und <math> z </math> in Gleichung <math> II </math> einsetzten und nach <math> y </math> auflösen.
 
9. <math> v </math>, <math> z </math> und <math> y </math> in Gleichung <math> I </math> einsetzen und nach <math> x </math> auflösen.
 
Endgültige Lösung:
 
<math> x=\frac{7}{2}</math>,<math>y=-7</math>, <math> z=1 </math>, <math> v=\frac{5}{2} </math> |Lösung |Lösung ausblenden}}


|Farbe= #F19E4F|3= Arbeitsmethode}}
|Farbe= #F19E4F|3= Arbeitsmethode}}
Zeile 384: Zeile 528:
===Kubische Funktionen im Sachzusammenhang===
===Kubische Funktionen im Sachzusammenhang===


{{Box|1= <span style="color: #89C64A">Virusinfektion</span>|2=  
{{Box|1= Aufgabe 4: Virusinfektion|2=  


[[Datei:Rabies Virus.jpg|rechts|rahmenlos|300x300px]]
[[Datei:Rabies Virus.jpg|rechts|rahmenlos|300x300px]]


Anmerkung: alle unteren Angaben sind frei erfunden
'''Achtung: Alle Angaben in dieser Aufgabe sind frei erfunden!'''


Im Januar befällt ein neuartiges Virus Deutschland. Mittlerweile ist es Oktober und du suchst im Internet nach Informationen über die Infektionszahlen. Dort triffst du auf folgende Informationen:
Im Januar befällt ein neuartiges Virus Deutschland. Mittlerweile ist es Oktober und du suchst im Internet nach Informationen über die Infektionszahlen. Dort triffst du auf folgende Informationen:
Zeile 394: Zeile 538:
*Im Dezember des Vorjahres befinden sich noch keine infizierten Personen in Deutschland
*Im Dezember des Vorjahres befinden sich noch keine infizierten Personen in Deutschland
*Im April leben 2.000.000 infizierte Personen in Deutschland
*Im April leben 2.000.000 infizierte Personen in Deutschland
*Im August leben 4.000.000 infizierte Personen in Deutschland
*Im August steigt die Anzahl infizierter Personen in Deutschland auf 4.000.000 an
*Durch entsprechende Maßnahmen ist die Zahl infizierter Personen ab August rückläufig
*Durch entsprechende Maßnahmen ist die Zahl infizierter Personen ab August rückläufig


Zeile 401: Zeile 545:




a) Die Anzahl infizierter Personen lässt sich durch eine kubische Funktion (Funktion dritten Grades) der Form <math>f(t) = at^3 + bt^2 + ct + d</math> beschreiben. Löse zunächst unteren Lückentext.
a) Die Anzahl infizierter Personen lässt sich durch eine kubische Funktion (Funktion dritten Grades) der Form <math>i(t) = at^3 + bt^2 + ct + d</math> beschreiben. Löse zunächst unteren Lückentext.




{{LearningApp|app=p3ibtei6520|width=100%|height=1000px}}
{{LearningApp|app=p3ibtei6520|width=100%|height=460px}}






b) Stelle mit Hilfe von Aufgabe a) die Gleichung von <math>f</math> auf. Mit unterem Applet kannst du dein Ergebnis selbstständig überprüfen.
b) Stelle mit Hilfe von Aufgabe a) die Gleichung von <math>i</math> auf. Mit unterem Applet kannst du dein Ergebnis selbstständig überprüfen.




<ggb_applet id="bkhvjgfz" width="100%" height="100%" />
<ggb_applet id="rvdarkjf" width="1536" height="700" border="888888" sdz="true" />




{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
<math>f(t) = -\frac{1}{64} t^3 + \frac{3}{16} t^2 = \frac{1}{64}  (-t^3 + 12t^2)</math>
<math>i(t) = -\frac{1}{64} t^3 + \frac{3}{16} t^2 = \frac{1}{64}  (-t^3 + 12t^2)</math>


{{Lösung versteckt|1=
{{Lösung versteckt|1=
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
f(t) &=& at^3 + bt^2 + ct + d \\
i(t) &=& at^3 + bt^2 + ct + d \\
f'(t) &=& 3at^2 + 2bt + c \\
i'(t) &=& 3at^2 + 2bt + c \\
\end{array}
\end{array}
</math>
</math>
Zeile 428: Zeile 572:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
&&f(0) &=& 0 \\
&&i(0) &=& 0 \\
&\Leftrightarrow& a \cdot 0^3 + b \cdot 0^2 + c \cdot 0 + d &=& 0 \\
&\Leftrightarrow& a \cdot 0^3 + b \cdot 0^2 + c \cdot 0 + d &=& 0 \\
&\Leftrightarrow& d &=& 0 \\
&\Leftrightarrow& d &=& 0 \\
Zeile 436: Zeile 580:
<br /><br />  
<br /><br />  
<math>
<math>
\Rightarrow f(t) = at^3 + bt^2 + ct
\Rightarrow i(t) = at^3 + bt^2 + ct
</math>
</math>
<br /><br />
<br /><br />
Zeile 442: Zeile 586:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
&&f(4) &=& 2 \\
&&i(4) &=& 2 \\
&\Leftrightarrow& a \cdot 4^3 + b \cdot 4^2 + c \cdot 4 &=& 2 \\
&\Leftrightarrow& a \cdot 4^3 + b \cdot 4^2 + c \cdot 4 &=& 2 \\
&\Leftrightarrow& 64a + 16b + 4c &=& 2 \\
&\Leftrightarrow& 64a + 16b + 4c &=& 2 \\
Zeile 451: Zeile 595:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
&&f(8) &=& 4 \\
&&i(8) &=& 4 \\
&\Leftrightarrow& a \cdot 8^3 + b \cdot 8^2 + c \cdot 8 &=& 4 \\
&\Leftrightarrow& a \cdot 8^3 + b \cdot 8^2 + c \cdot 8 &=& 4 \\
&\Leftrightarrow& 512a + 64b + 8c &=& 4 \\
&\Leftrightarrow& 512a + 64b + 8c &=& 4 \\
Zeile 460: Zeile 604:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
&&f'(8) &=& 0 \\
&&i'(8) &=& 0 \\
&\Leftrightarrow& 3a \cdot 8^2 + 2b \cdot 8 + c &=& 0 \\
&\Leftrightarrow& 3a \cdot 8^2 + 2b \cdot 8 + c &=& 0 \\
&\Leftrightarrow& 192a + 16b + c &=& 0 \\
&\Leftrightarrow& 192a + 16b + c &=& 0 \\
Zeile 549: Zeile 693:
<br /><br />
<br /><br />
<math>
<math>
f(t) = -\frac{1}{64} t^3 + \frac{3}{16} t^2 = \frac{1}{64}  (-t^3 + 12t^2)
i(t) = -\frac{1}{64} t^3 + \frac{3}{16} t^2 = \frac{1}{64}  (-t^3 + 12t^2)
</math>
</math>
|2=Möglicher Lösungsweg|3=Möglichen Lösungsweg ausblenden}}  
|2=Möglicher Lösungsweg|3=Möglichen Lösungsweg ausblenden}}  
|2=Lösung 2 (Funktionsgleichung)|3=Lösung 2 (Funktionsgleichung) ausblenden}}  
|2=Lösung|3=Lösung ausblenden}}  




Zeile 561: Zeile 705:


{{Lösung versteckt|1=
{{Lösung versteckt|1=
<math>
Notwendige Bedingung für Wendestellen: <math>i''(t) = 0</math>
\begin{array}{rlll}
Hinreichende Bedingung für Wendestellen: <math>i''(t) = 0</math> und <math>i'''(t) \neq 0</math>
&\textrm{notwendige} \, \textrm{Bedingung:}& f''(t) &=& 0 \\
&\textrm{hinreichende} \, \textrm{Bedingung:}& f'''(t) &\neq& 0 \\
\end{array}
</math>
|2=Tipp 2 |3=Tipp 2 ausblenden}}
|2=Tipp 2 |3=Tipp 2 ausblenden}}


{{Lösung versteckt|1=
{{Lösung versteckt|1=
Der Graph der Funktion <math>f</math> hat einen '''Wendepunkt bei <math>t = 4</math>'''. Die stärkste Zunahme infizierter Personen ist also im April (bzw. im Frühling) nachzuweisen. Die Behauptung ist demnach richtig.
Der Graph der Funktion <math>i</math> hat einen '''Wendepunkt bei <math>t = 4</math>'''. Die stärkste Zunahme infizierter Personen ist also im April (bzw. im Frühling) nachzuweisen. Die Behauptung ist demnach richtig.


{{Lösung versteckt|1=
{{Lösung versteckt|1=
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
f(t) &=& -\frac{1}{64} t^3 + \frac{3}{16} t^2 \\
i(t) &=& -\frac{1}{64} t^3 + \frac{3}{16} t^2 \\
f'(t) &=& -\frac{3}{64} t^2 + \frac{3}{8} t  \\
i'(t) &=& -\frac{3}{64} t^2 + \frac{3}{8} t  \\
f''(t) &=& -\frac{3}{32} t + \frac{3}{8} \\
i''(t) &=& -\frac{3}{32} t + \frac{3}{8} \\
f'''(t) &=& -\frac{3}{32} \\
i'''(t) &=& -\frac{3}{32} \\
\end{array}
\end{array}
</math>
</math>
Zeile 585: Zeile 725:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
\textrm{Notwendige} \, \textrm{Bedingung:}
\text{Notwendige Bedingung für Wendestellen:}
&& f''(t) &=& 0 \\
&& i''(t) &=& 0 \\
&\Leftrightarrow& -\frac{3}{32} t + \frac{3}{8} &=& 0 &\mid +\frac{3}{32} t\\
&\Leftrightarrow& -\frac{3}{32} t + \frac{3}{8} &=& 0 &\mid +\frac{3}{32} t\\
&\Leftrightarrow& \frac{3}{32} t &=& \frac{3}{8} &\mid :\frac{3}{32} \\
&\Leftrightarrow& \frac{3}{32} t &=& \frac{3}{8} &\mid :\frac{3}{32} \\
Zeile 596: Zeile 736:
<math>
<math>
\begin{array}{rlll}
\begin{array}{rlll}
\textrm{Hinreichende} \, \textrm{Bedingung:}
\text{Hinreichende Bedingung für Wendestellen:}
&&f''(4) &=& 0 &&\textrm{und} \\
&&i''(4) &=& 0 &&\textrm{und} \\
&&f'''(4) &=& -\frac{3}{32} &\neq& 0
&&i'''(4) &=& -\frac{3}{32} &\neq& 0
\end{array}
\end{array}
</math>
</math>
Zeile 607: Zeile 747:




d) Skizziere nun den Graphen von <math>f</math> anhand der Informationen auf einem Blatt. Beachte hierbei die geeignete Beschriftung der Koordinatenachsen. Für welchen Zeitraum ist dieser Graph als mathematische Modellierung der Virusinfektion geeignet?
d) Skizziere nun den Graphen von <math>i</math> anhand der Informationen auf einem Blatt. Beachte hierbei die geeignete Beschriftung der Koordinatenachsen. Für welchen Zeitraum ist dieser Graph als mathematische Modellierung der Virusinfektion geeignet?


{{Lösung versteckt|1=[[Datei:Graph e.png|zentriert|rahmenlos|800x800px]]
{{Lösung versteckt|1=[[Datei:Graph e.png|zentriert|rahmenlos|800x800px]]
<br /><br />
<br /><br />
Da die Funktionswerte von <math>f</math> für <math>t > 12</math> negativ sind, ist der Graph nur für <math>0 \leq t \leq 12</math> als mathematische Modellierung der Virusinfektion geeignet. Inwiefern der Graph für das vorherige Jahr geeignet ist, lässt sich anhand der Informationen nicht eindeutig feststellen. Der Graph zeigt jedoch, dass zu einem bestimmten Zeitpunkt vor dem beobachteten Jahr unendlich viele infizierte Personen in Deutschland leben, was offensichtlich nicht möglich ist.|2=Lösung|3=Lösung ausblenden}}
Da die Funktionswerte von <math>i</math> für <math>t > 12</math> negativ sind, ist der Graph nur für <math>0 \leq t \leq 12</math> als mathematische Modellierung der Virusinfektion geeignet. Inwiefern der Graph für das vorherige Jahr geeignet ist, lässt sich anhand der Informationen nicht eindeutig feststellen. Der Graph zeigt jedoch, dass zu einem bestimmten Zeitpunkt vor dem beobachteten Jahr unendlich viele infizierte Personen in Deutschland leben, was offensichtlich nicht möglich ist.|2=Lösung|3=Lösung ausblenden}}


|Farbe= #89C64A|3= Arbeitsmethode}}
|Farbe= #89C64A|3= Arbeitsmethode}}
{{Box|1=<span style="color: #F19E4F"> Alles klar? </span>|Bearbeite den Lückentext|
2= {{LearningApp|width:100%|height:250px|app=10753102}}|Farbe= #F19E4F|3= Arbeitsmethode}}

Aktuelle Version vom 12. Juni 2020, 22:46 Uhr

Info

In diesem Lernpfadkapitel lernst du Steckbriefaufgaben kennen. In Steckbriefaufgaben geht es darum, aus den Eigenschaften einer Funktion deren Funktionsterm und Funktionsgraphen herzuleiten.

Damit übst du das Modellieren und Mathematisieren , indem du mithilfe mathematischer Kenntnisse und Fertigkeiten Lösungen innerhalb mathematischer Modelle erarbeitest. Dazu ist das Lösen von Gleichungssystemen mit mehr als einer Variablen notwendig. Du stellst lineare Gleichungssysteme in Matrix-Vektor-Schreibweise dar, löst sie mithilfe geeigneter Verfahren und interpretierst ihre Lösungsmenge.

Wir empfehlen dir, dich bereits mit den Eigenschaften von Funktionen und der lokalen Änderungsrate beschäftigt zu haben, wenn du mit dieser Seite beginnst.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
  • Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!

Das Einsetzungsverfahren

Das Einsetzungsverfahren

Das Einsetzungsverfahren kannst du verwenden, um ein Gleichungssystem mit zwei Variablen zu lösen. Dabei versuchst du zuerst eine Variable allein auf eine Seite zu bringen und diese Gleichung dann in die zweite Gleichung einzusetzen.

Schau dir folgendes Gleichungssystem an:

Die Gleichung ist bereits nach der Variable aufgelöst. Die linke Seite der Gleichung fügen wir nun statt in die die Gleichung ein. Das sieht folgendermaßen aus:

1. Wir vereinfachen

2. Und stellen nach um

3. Dann teilen wir durch den Vorfaktor, hier 8 und es ergibt sich

4. Das können wir nun in eine der beiden Gleichungen einsetzen und nach umstellen. Gleichung eignet sich dafür natürlich am besten. Es gilt:

Du verwendest dieses Verfahren bei Gleichungssystemen mit 2 Variablen. Dabei stellst du die eine Gleichung nach einer Variable um und setzt diese dann in die andere Gleichung ein. Nun kannst du vorgehen wie bei einer Gleichung mit nur einer Variable.


Aufgaben zum Einsetzungsverfahren

Aufgabe 1: Gleichungssysteme mit dem Einsetzungsverfahren lösen

a)


1. Wir stellen nach y um, Gleichung eignet sich dafür am besten.


2. Wir setzen in Gleichung ein:

,


b)

Stelle nach um und setzte dies in Gleichung , um in zu eliminieren.

1. Wir stellen nach um.

2. Wir setzen nun in ein und lösen nach auf.

3. Wir setzen nun in Gleichung ein und lösen nach auf.




,
,

Quadratische Funktionen im Sachzusammenhang

Aufgabe 2: Elternsprechtag
Parkplatz Elternsprechtag.jpg

Jedes halbe Jahr veranstaltet eine Schule einen Elternsprechtag von 12 Uhr bis 18 Uhr. Den Eltern stehen auf dem Lehrerparkplatz aber nur eine begrenzte Anzahl an Parkplätzen zur Verfügung, sodass die Schulleitung rechtzeitig entscheiden muss, ob noch weitere Parkplätze angemietet werden müssen. Sie geht davon aus, dass der erste Parkplatz erst nach Beginn des Elternsprechtages belegt wird und spätestens um 18 Uhr das letzte Auto den Parkplatz verlassen hat. Diesen Elternsprechtag stehen den Eltern 50 Parkplätze zur Verfügung. Eine Zählung um 13 Uhr ergibt, dass bereits die Hälfte der zur Verfügung stehenden Parkplätze belegt ist.



a) Die Anzahl belegter Parkplätze lässt sich in Abhängigkeit zur Uhrzeit (mit in Stunden, wobei 12 Uhr repräsentiert) durch eine quadratische Funktion der Form beschreiben. Löse zunächst den unteren Lückentext.




b) Stelle mit Hilfe von Aufgabe a) die Gleichung von auf. Mit unterem Applet kannst du dein Ergebnis selbstständig überprüfen.


GeoGebra
























Insgesamt erhalten wir also folgendes Gleichungssystem:



Dieses Gleichungssystem lösen wir mit dem Einsetzungsverfahren:

Als erstes stellen wir Gleichung nach um und erhalten



Setzen wir diese (umgeformte) Gleichung in Gleichung ein, erhalten wir



Setzen wir in die (umgeformte) Gleichung ein, erhalten wir



und damit insgesamt


c) Entscheide, ob die 50 Parkplätze für die gesamte Dauer des Elternsprechtages ausreichend sind oder zusätzliche Parkplätze angemietet werden müssen.

Damit die Parkplätze ausreichen, dürfen maximal 50 Parkplätze zu einer bestimmten Uhrzeit belegt sein. Hat die Funktion einen Hochpunkt mit einem Funktionswert kleiner gleich 50, so ist sie nirgendwo größer als dort.

Notwendige Bedingung für Extremstellen: \\

Hinreichende Bedingung für Extremstellen: und \\

Der Graph der Funktion hat den Hochpunkt . Die maximale Anzahl belegter Parkplätze ist also um 15 Uhr nachzuweisen. Zu der Zeit sind 45 Parkplätze belegt, sodass die vorhandenen 50 Parkplätze ausreichen.











d) Skizziere nun den Graphen von anhand der Informationen auf einem Blatt. Beachte hierbei die geeignete Beschriftung der Koordinatenachsen. Für welchen Zeitraum ist dieser Graph als mathematische Modellierung der Parkplatzsituation geeignet?

Graph 1c.png



Da die Funktionswerte von für und negativ sind, ist der Graph nur für als mathematische Modellierung der Parkplatzsituation geeignet.

Das Gauß-Verfahren

Das Gauß-Verfahren

Das Gauß-Verfahren kann bei Gleichungssystemen mit zwei oder mehr Variablen verwendet werden. Dabei versuchst du die Gleichungen so zu vereinfachen, dass eine obere Dreiecksmatix entsteht.

Schaue dir folgende Gleichungen an:


1. Um die -Variable in Gleichung zu eliminieren rechnen wir :

In Matrix-Vektor-Schreibweise:


2. Um die -Variable in Gleichung zu eliminieren rechnen wir :

In Matrix-Vektor-Schreibweise:


3. Nun soll auch die -Variable in Gleichung eliminiert werden. Dazu rechnen wir

Unsere Gleichungen sehen nun folgendermaßen aus:

In Matrix-Vektor-Schreibweise:

Wir können Gleichung nun nach auflösen. Dann setzen wir den -Wert in Gleichung ein und lösen nach auf. Zuletzt setzten wir jeweils den berechneten - und -Wert in Gleichung ein und lösen nach auf. Wir erhalten so unsere dritte Variable.

Es folgt also:

, ,

Du verwendest dieses Verfahren bei Gleichungssystemen mit zwei oder mehr Variablen. Dabei stellst du die Gleichungen so um, das in einer Gleichung nur eine Variable, in der zweiten Gleichung zwei Variablen und in der dritten Gleichung alle drei Variablen vorkommen. Das bezeichnet man auch als obere Dreiecksmatrix. Nun kannst du mit der ersten Gleichung so vorgehen wie bei einer Gleichung mit nur einer Variable und die Lösung dann in die zweite Gleichung einsetzen. Die Lösung dieser Gleichung setzt du dann in die letzte Gleichung ein. Bei vier Gleichungen mit vier Variablen gehst du analog vor.


Aufgaben zum Gauß-Verfahren

Aufgabe 3: Gleichungssysteme mit dem Gauß-Verfahren lösen

a)


Eliminiere zuerst die -Variable in der zweiten Zeile.
Deine Gleichungen sollten am Ende folgende Form haben 

1. Gleichung von Gleichung abziehen.

2. Gleichung von Gleichung abziehen.

3. Gleichung von Gleichung abziehen.

Deine Gleichungen sollten dann folgendermaßen aussehen:

4. aus der Gleichung berechnen.

5. in Gleichung einsetzen und nach umstellen, um zu erhalten.

6. und in Gleichung einsetzen und nach umstellen, um zu erhalten.

Endgültige Lösung:

, ,


b) ⭐


Eliminiere zuerst den -Wert in Gleichung .
Deine Gleichungen sollten am Ende folgende Form haben: 

1. Gleichung von Gleichung abziehen.

2. Gleichung von Gleichung abziehen.

3. Gleichung von Gleichung abziehen.

Deine Gleichungen sollten dann folgendermaßen aussehen:

4. Gleichung zu Gleichung addieren.

5. Gleichung von Gleichung abziehen.

Deine Gleichungen sollten dann folgendermaßen aussehen:


6. aus Gleichung berechnen.

7. in Gleichung einsetzen und nach auflösen.

8. und in Gleichung einsetzten und nach auflösen.

9. , und in Gleichung einsetzen und nach auflösen.

Endgültige Lösung:

,, ,

Kubische Funktionen im Sachzusammenhang

Aufgabe 4: Virusinfektion
Rabies Virus.jpg

Achtung: Alle Angaben in dieser Aufgabe sind frei erfunden!

Im Januar befällt ein neuartiges Virus Deutschland. Mittlerweile ist es Oktober und du suchst im Internet nach Informationen über die Infektionszahlen. Dort triffst du auf folgende Informationen:

  • Im Dezember des Vorjahres befinden sich noch keine infizierten Personen in Deutschland
  • Im April leben 2.000.000 infizierte Personen in Deutschland
  • Im August steigt die Anzahl infizierter Personen in Deutschland auf 4.000.000 an
  • Durch entsprechende Maßnahmen ist die Zahl infizierter Personen ab August rückläufig



a) Die Anzahl infizierter Personen lässt sich durch eine kubische Funktion (Funktion dritten Grades) der Form beschreiben. Löse zunächst unteren Lückentext.




b) Stelle mit Hilfe von Aufgabe a) die Gleichung von auf. Mit unterem Applet kannst du dein Ergebnis selbstständig überprüfen.


GeoGebra




























Insgesamt erhalten wir also folgendes Gleichungssystem:



Dieses Gleichungssystem lösen wir mit dem Gauß-Verfahren:



















Gleichung liefert uns nun



Setzen wir in Gleichung ein, erhalten wir



Setzen wir und in Gleichung ein, erhalten wir





und damit insgesamt


c) Wissenschaftler behaupten, dass die milden Temperaturen im Frühling dafür sorgen, dass sich der temperaturempfindliche Virus optimal ausbreiten kann und deshalb die stärkste Zunahme infizierter Personen im Frühling nachzuweisen ist. Prüfe diese Behauptung anhand der Informationen.

Der Wendepunkt ist der Punkt der stärksten Zunahme (oder stärksten Abnahme) des Funktionsgraphen, der an dieser Stelle sein Krümmungsverhalten ändert.

Notwendige Bedingung für Wendestellen:

Hinreichende Bedingung für Wendestellen: und

Der Graph der Funktion hat einen Wendepunkt bei . Die stärkste Zunahme infizierter Personen ist also im April (bzw. im Frühling) nachzuweisen. Die Behauptung ist demnach richtig.







d) Skizziere nun den Graphen von anhand der Informationen auf einem Blatt. Beachte hierbei die geeignete Beschriftung der Koordinatenachsen. Für welchen Zeitraum ist dieser Graph als mathematische Modellierung der Virusinfektion geeignet?

Graph e.png



Da die Funktionswerte von für negativ sind, ist der Graph nur für als mathematische Modellierung der Virusinfektion geeignet. Inwiefern der Graph für das vorherige Jahr geeignet ist, lässt sich anhand der Informationen nicht eindeutig feststellen. Der Graph zeigt jedoch, dass zu einem bestimmten Zeitpunkt vor dem beobachteten Jahr unendlich viele infizierte Personen in Deutschland leben, was offensichtlich nicht möglich ist.