Benutzer:Stoll-Gym10Erfurt/Mathematik9/Quadratische Funktionen: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: Quelltext-Bearbeitung 2017 |
Markierung: Quelltext-Bearbeitung 2017 |
||
| (38 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
| Zeile 1: | Zeile 1: | ||
===Übungen "Lineare Funktion" zur Wiederholung=== | ===Übungen "Lineare Funktion" zur Wiederholung=== | ||
{{Box|Vorwissen|<big>Bearbeite die folgenden Aufgaben zum Vorwissen. </big>| | {{Box-spezial | ||
|Titel= Vorwissen | |||
|Inhalt= | |||
<big>'''Bearbeite die folgenden Aufgaben zum Vorwissen.'''</big> | |||
|Farbe= #0077dd | |||
|Hintergrund= #FF0000 | |||
|Icon= <span class="brainy hdg-quill"></span> | |||
}} | |||
{{Box-spezial | |||
|Titel= Aufgabe 1: Weißt du's noch? | |||
|Inhalt= Beantworte die Fragen zu linearen Funktionen. Es können auch mehrere Antworten möglich sein. | |||
{{LearningApp|app=ptvafj8jc19|width:100%|height:650px}} | |||
|Farbe= #0077dd | |||
|Hintergrund= #A8DF4A | |||
|Icon= <span class="brainy hdg-pin"></span> | |||
}} | |||
{{Box-spezial | |||
|Titel= Applet Geogebra | |||
|Inhalt= Experimentiere mit dem Applet | |||
<ggb_applet id="kVmNVEnx" width="100%" height="310"/> | |||
|Farbe= #0077dd | |||
|Hintergrund= #A8DF4A | |||
|Icon= <span class="brainy hdg-pin"></span> | |||
}} | }} | ||
{{Box-spezial | |||
{{Box | |Titel= Übung | ||
|Inhalt= Bearbeite die folgenden Fragen im Quiz. | |||
{{LearningApp|app= p2f5de9p523|width=100%|height=500px}} | {{LearningApp|app= p2f5de9p523|width=100%|height=500px}} | ||
| | |Farbe= #0077dd | ||
| | |Hintergrund= #A8DF4A | ||
< | |Icon= <span class="brainy hdg-pin"></span> | ||
}} | |||
===Darstellungsformen der quadratischen Funktion=== | ===Darstellungsformen der quadratischen Funktion=== | ||
{{Box-spezial | {{Box-spezial | ||
|Titel= | |Titel= Es gibt drei Möglichkeiten eine Funktionsgleichung für die quadratische Funktion anzugeben. | ||
|Inhalt= | |Inhalt= | ||
<big> | <big> | ||
| Zeile 38: | Zeile 47: | ||
===Allgemeine Aussagen=== | ===Allgemeine Aussagen=== | ||
{{Box-spezial | |||
{{Box|Merke| | |Titel= Merke | ||
Den Graf quadratischer Funktionen bezeichnet man als '''Parabel'''. | |Inhalt= | ||
<big>Den Graf quadratischer Funktionen bezeichnet man als '''Parabel'''. | |||
Jede Parabel besitzt einen '''Scheitelpunkt'''. Dort wechselt der Graf seine Monotonie, von fallend in steigend oder umgekehrt. | Jede Parabel besitzt einen '''Scheitelpunkt'''. Dort wechselt der Graf seine Monotonie, von fallend in steigend oder umgekehrt. | ||
Der Scheitelpunkt ist entweder der tiefste oder der höchste Punkt der Parabel. | Der Scheitelpunkt ist entweder der tiefste oder der höchste Punkt der Parabel. | ||
| Zeile 49: | Zeile 59: | ||
Die y – Werte, die ein Funktionsausdruck annehmen kann, bezeichnet man als '''Wertevorrat''' oder '''Wertebereich'''. | Die y – Werte, die ein Funktionsausdruck annehmen kann, bezeichnet man als '''Wertevorrat''' oder '''Wertebereich'''. | ||
Die y-Werte nennt man die '''abhängige Variable''', die y – Achse bezeichnet man als '''Ordinate'''.| | Die y-Werte nennt man die '''abhängige Variable''', die y – Achse bezeichnet man als '''Ordinate'''.</big> | ||
|Farbe= #0077dd | |||
|Hintergrund= #FF0000 | |||
|Icon= <span class="brainy hdg-quill"></span> | |||
}} | |||
===Die Normalparabel=== | ===Die Normalparabel=== | ||
====Die Normalparabel zeichnen und grundlegende Eigenschaften==== | ====Die Normalparabel zeichnen und grundlegende Eigenschaften==== | ||
{{#ev:youtube|vI6G8Tefvsk}}< | {{Box-spezial | ||
|Titel= Sieh Dir das folgende Video an. | |||
|Inhalt= {{#ev:youtube|vI6G8Tefvsk}} | |||
|Farbe= #0077dd | |||
|Hintergrund= #A8DF4A | |||
|Icon= <span class="brainy hdg-screen01"></span> | |||
}} | |||
===Die Scheitelpunktform=== | ===Die Scheitelpunktform=== | ||
{{Box-spezial | |||
{{Box|Merke| | |Titel= Merke | ||
|Inhalt= | |||
<big> | |||
Ist die quadratische Funktion in der Form <math>y = f(x) = a(x+d)^2+e</math> angegeben, so spricht man von der '''Scheitelpunktform'''(wobei a ≠ 0). In dieser Darstellungsform kann man den Scheitelpunkt direkt ablesen. Er hat die Koordinaten <math>SP(-d | e)</math>. | Ist die quadratische Funktion in der Form <math>y = f(x) = a(x+d)^2+e</math> angegeben, so spricht man von der '''Scheitelpunktform'''(wobei a ≠ 0). In dieser Darstellungsform kann man den Scheitelpunkt direkt ablesen. Er hat die Koordinaten <math>SP(-d | e)</math>. | ||
| | </big> | ||
|Farbe= #0077dd | |||
{{Box|Aufgabe | |Hintergrund= #FF0000 | ||
| | |Icon= <span class="brainy hdg-quill"></span> | ||
}} | |||
{{Box-spezial | |||
|Titel= Aufgabe | |||
|Inhalt=Verwende nun die CAS-App. Untersuche den Einfluss der drei Parameter a, d und e in der Funktion <math>y = f(x) = a(x+d)^2+e</math>. Wähle dafür die App "Graph". Erzeuge für die Parameter jeweils einen Schieberegler. Bewege die Schieberegler einzeln und notiere Deine Beobachtungen. | |||
|Farbe= #0077dd | |||
|Hintergrund= #54ff9f | |||
|Icon= <span class="brainy hdg-pin"></span> | |||
}} | |||
====Die quadratische Funktion in der Form <math>y = f(x) = (x+d)^2+e</math>==== | ====Die quadratische Funktion in der Form <math>y = f(x) = (x+d)^2+e</math>==== | ||
{{#ev:youtube|JIFFq0pDNhw}}< | {{Box-spezial | ||
|Titel= Arbeitsauftrag | |||
|Inhalt= | |||
<big>In den folgenden Videos werden die Einflüsse der drei Parameter auch nochmals erklärt.</big> | |||
|Farbe= #0077dd | |||
|Hintergrund= #FF0000 | |||
|Icon= <span class="brainy hdg-quill"></span> | |||
}} | |||
{{Box-spezial | |||
|Titel= Sieh Dir das folgende Video an. | |||
|Inhalt= {{#ev:youtube|JIFFq0pDNhw}} | |||
|Farbe= #0077dd | |||
|Hintergrund= #A8DF4A | |||
|Icon= <span class="brainy hdg-screen01"></span> | |||
}} | |||
====Die quadratische Funktion in der Form <math>y = f(x) = a \cdot x^2</math>==== | ====Die quadratische Funktion in der Form <math>y = f(x) = a \cdot x^2</math>==== | ||
{{#ev:youtube|1baXAw3ES6g}} < | {{Box-spezial | ||
|Titel= Sieh Dir das folgende Video an. | |||
{{Box|Übung | |Inhalt= {{#ev:youtube|1baXAw3ES6g}} | ||
|Farbe= #0077dd | |||
|Hintergrund= #A8DF4A | |||
|Icon= <span class="brainy hdg-screen01"></span> | |||
}} | |||
{{Box-spezial | |||
|Titel= Übung | |||
|Inhalt= Ordne im Quiz den Abbildungen die jeweilige Funktionsgleichung zu. | |||
{{LearningApp|app= 2798285|width=100%|height=500px}} | {{LearningApp|app= 2798285|width=100%|height=500px}} | ||
| | |Farbe= #0077dd | ||
| | |Hintergrund= #A8DF4A | ||
|Icon= <span class="brainy hdg-pin"></span> | |||
{{Box|Übung | }} | ||
{{Box-spezial | |||
|Titel= Übung | |||
|Inhalt= Ordne die quadratischen Funktionen den entsprechenden Funktionsgraphen zu. | |||
{{LearningApp|app= 391866|width=100%|height=500px}} | {{LearningApp|app= 391866|width=100%|height=500px}} | ||
| | |Farbe= #0077dd | ||
| | |Hintergrund= #A8DF4A | ||
|Icon= <span class="brainy hdg-pin"></span> | |||
}} | |||
===Die Normalform=== | === Die Normalform === | ||
{{Box-spezial | |||
{{Box|Merke| | |Titel= Merke | ||
|Inhalt= | |||
<big> | |||
Ist die quadratische Funktion in der Form <math>y = f(x) = x^2+px+q </math> angegeben, so spricht man von der '''Normalform''' <math>( a = 1 )</math>. | Ist die quadratische Funktion in der Form <math>y = f(x) = x^2+px+q </math> angegeben, so spricht man von der '''Normalform''' <math>( a = 1 )</math>. | ||
Aussagen über das Aussehen des Grafen können nur sehr allgemein gehalten werden. Die Werte von p und q beeinflussen das Aussehen der Parabel. | Aussagen über das Aussehen des Grafen können nur sehr allgemein gehalten werden. Die Werte von p und q beeinflussen das Aussehen der Parabel. | ||
| | </big> | ||
|Farbe= #0077dd | |||
|Hintergrund= #FF0000 | |||
|Icon= <span class="brainy hdg-quill"></span> | |||
}} | |||
<div style="font-size: 15pt; background-color: red; text-align: left; color: yellow; padding: 5px 80px 5px 80px; margin-top: 2px;"> | |||
'''Eigenschaften der Funktion''' | '''Eigenschaften der Funktion''' | ||
| Zeile 112: | Zeile 171: | ||
| eine Parallele zur y – Achse, die durch den Scheitelpunkt verläuft | | eine Parallele zur y – Achse, die durch den Scheitelpunkt verläuft | ||
|} | |} | ||
</div> | |||
===Die allgemeine Form=== | ===Die allgemeine Form=== | ||
{{Box-spezial | |||
{{Box|Merke| | |Titel= Merke | ||
Ist die quadratische Funktion in der Form <math>y = f(x) = a\cdot x^2+ b\cdot x+ c </math> angegeben, so spricht man von der '''allgemeinen Form'''.<br> | |Inhalt= | ||
<big>Ist die quadratische Funktion in der Form <math>y = f(x) = a\cdot x^2+ b\cdot x+ c </math> angegeben, so spricht man von der '''allgemeinen Form'''.<br> | |||
Der Graph von f ist ebenfalls eine '''Parabel'''.<br> | Der Graph von f ist ebenfalls eine '''Parabel'''.<br> | ||
Die zugehörige Parabel schneidet die y-Achse bei c. | Die zugehörige Parabel schneidet die y-Achse bei c.</big> | ||
| | |Farbe= #0077dd | ||
|Hintergrund= #FF0000 | |||
|Icon= <span class="brainy hdg-quill"></span> | |||
}} | |||
<div style="font-size: 15pt; background-color: red; text-align: left; color: yellow; padding: 5px 80px 5px 80px; margin-top: 2px;"> | |||
'''Begriffe''' | '''Begriffe''' | ||
{| class="wikitable" | {| class="wikitable" | ||
| Zeile 133: | Zeile 198: | ||
|konstantes Glied im Term | |konstantes Glied im Term | ||
|} | |} | ||
</div> | |||
<div style="font-size: 15pt; background-color: red; text-align: left; color: yellow; padding: 5px 80px 5px 80px; margin-top: 2px;"> | |||
'''Eigenschaften der Funktion''' | '''Eigenschaften der Funktion''' | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Zeile 177: | Zeile 242: | ||
|- | |- | ||
|} | |} | ||
</div> | |||
=== Umwandlung aus der allgemeinen Form in die Scheitelpunktform === | === Umwandlung aus der allgemeinen Form in die Scheitelpunktform === | ||
{{Box-spezial | |||
{{Box|Aufgabe 1: Einstieg ins Thema|Schau Dir in aller Ruhe das Video an. Nimm Dir Zeit und mache auch die Übungen zwischendurch. | |Titel= Aufgabe 1: Einstieg ins Thema | ||
|Inhalt= Schau Dir in aller Ruhe das Video an. Nimm Dir Zeit und mache auch die Übungen zwischendurch. | |||
{{LearningApp|app=pifdn7mg222 |width=100%|height=500px}} | {{LearningApp|app=pifdn7mg222 |width=100%|height=500px}} | ||
< | |Farbe= #0077dd | ||
|Hintergrund= #A8DF4A | |||
|Icon= <span class="brainy hdg-pin"></span> | |||
{{Box|Erklärvideo|Hier ein 2. Video ohne Unterbrechungen. | }} | ||
{{#ev:youtube|NuXXc6m-IFU}}< | {{Box-spezial | ||
|Titel= Erklärvideo | |||
|Inhalt= Hier ein 2. Video ohne Unterbrechungen. | |||
{{#ev:youtube|NuXXc6m-IFU}} | |||
|Farbe= #0077dd | |||
|Hintergrund= #A8DF4A | |||
|Icon= <span class="brainy hdg-screen01"></span> | |||
}} | |||
===Anwendungsaufgaben=== | ===Anwendungsaufgaben=== | ||
{{Box|Zeichnen von Graphen anhand der Scheitelpunktform| | {{Box-spezial | ||
Skizziere die angegebenen Funktionen als Graphen in dein Heft:<br/> | |Titel= Zeichnen von Graphen anhand der Scheitelpunktform | ||
|Inhalt= Skizziere die angegebenen Funktionen als Graphen in dein Heft:<br/> | |||
<math>1.\quad f(x)=-2\cdot (x-3)^2+4</math> <br/> | <math>1.\quad f(x)=-2\cdot (x-3)^2+4</math> <br/> | ||
<math>2.\quad g(x)=0,5\cdot (x+2)^2-3</math> | <math>2.\quad g(x)=0,5\cdot (x+2)^2-3</math> | ||
{{Lösung versteckt|1= Schaue dir die Funktion bezüglich ihrer Parameter a,d und e genau an. Welchen Einfluss haben die Parameter? Mache dir dann klar, wie der Graph ungefähr aussehen muss.|2=Tipp 1|3=schließen}} | {{Lösung versteckt|1= Schaue dir die Funktion bezüglich ihrer Parameter a,d und e genau an. Welchen Einfluss haben die Parameter? Mache dir dann klar, wie der Graph ungefähr aussehen muss.|2=Tipp 1|3=schließen}} | ||
{{Lösung versteckt|1= Falls du nicht mehr ganz im Kopf hast, was die einzelnen Parameter machen, schaue dir die beiden Videos noch einmal an.|2=Tipp 2|3=schließen}} | {{Lösung versteckt|1= Falls du nicht mehr ganz im Kopf hast, was die einzelnen Parameter machen, schaue dir die beiden Videos noch einmal an.|2=Tipp 2|3=schließen}} | ||
{{Lösung versteckt|1=[[Datei:Quadtratische Funktionen.png|maxi|500px|Lösungen zu den Skizzen]]}} | {{Lösung versteckt|1=[[Datei:Quadtratische Funktionen.png|maxi|500px|Lösungen zu den Skizzen]]}} | ||
| | |Farbe= #0077dd | ||
{{Box|Aufgabe | |Hintergrund= #54ff9f | ||
|Icon= <span class="brainy hdg-pin"></span> | |||
}} | |||
{{Box-spezial | |||
|Titel= Aufgabe | |||
|Inhalt= | |||
Die Bahn der beim Kieselsteinwurf geworfenen Steine hat die Form einer Parabel. Neles Wurf wird durch die Gleichung <math>y = f(x) = - \frac{1}{50}x^2+\frac{2}{5}x</math> beschrieben; Stefans Wurf durch die Gleichung <math>y = f(x) = -8x^2+16x</math>(x in Meter).<br> | |||
a) Wer von beiden wirft höher?<br/> | a) Wer von beiden wirft höher?<br/> | ||
b) Wer von beiden wirft weiter? | b) Wer von beiden wirft weiter? | ||
| | |Farbe= #0077dd | ||
|Hintergrund= #54ff9f | |||
{{Box|Aufgabe | |Icon= <span class="brainy hdg-file02"></span> | ||
}} | |||
{{Box-spezial | |||
|Titel= Aufgabe | |||
|Inhalt= | |||
Von einem Tunnelbogen sind folgende Messwerte (Punkte) bekannt: A(0/0), B(1/0,76) und C(2/1,44), wobei alle Angaben Meterangaben sind. | |||
* Erstelle eine beschriftete Skizze der Situation. | * Erstelle eine beschriftete Skizze der Situation. | ||
* Stelle eine Funktionsgleichung auf, die den Tunnelbogen beschreibt. | * Stelle eine Funktionsgleichung auf, die den Tunnelbogen beschreibt. | ||
* Wie hoch und wie breit ist der Tunnel? | * Wie hoch und wie breit ist der Tunnel? | ||
* In welchem Bereich des Tunnels könnte ein 3,5 m hoher LKW fahren. | * In welchem Bereich des Tunnels könnte ein 3,5 m hoher LKW fahren. | ||
| | |Farbe= #0077dd | ||
{{Box|Aufgabe | |Hintergrund= #54ff9f | ||
Die Seitenlängen der Grundfläche unterscheiden sich um 25 cm. Wie lang sind diese? | |Icon= <span class="brainy hdg-file02"></span> | ||
}} | |||
{{Box-spezial | |||
|Titel= Aufgabe | |||
|Inhalt= | |||
Gegeben sind zwei quadratische Funktionen f(x) und g(x), deren Grafen sich in den Punkten A und B schneiden.<br/> | |||
Die Funktion f(x) ist die an der x-Achse gespiegelt Normalparabel mit dem Scheitelpunkt <math> S(0 \mid 0) </math>.<br/> | |||
Die Funktion g(x) ist durch die Gleichung <math>y = g(x) = x^2-2x-4; x \in \R </math> gegeben.<br/> | |||
# Geben Sie die Koordinaten der Schnittpunkte A und B an. | |||
# Berechnen Sie die Länge der Strecke <math> \overline{\rm AB} </math>. (Eine Längeneinheit entspricht 1,0 cm.) | |||
# Geben Sie die Gleichung der Funktion h(x) an, deren Graf die Gerade durch die Punkte a und B ist. | |||
{{Lösung versteckt|1= <math> A(-1 \mid -1) \; und \; B(2 \mid -4) </math>|2=Lösung 1. |3=schließen}} | |||
{{Lösung versteckt|1= Länge = 4,2 cm|2=Lösung 2.|3=schließen}} | |||
{{Lösung versteckt|1= <math>y=h(x) = -x-2 </math>|2=Lösung 3.|3=schließen}} | |||
|Farbe= #0077dd | |||
|Hintergrund= #54ff9f | |||
|Icon= <span class="brainy hdg-file02"></span> | |||
}} | |||
{{Box-spezial | |||
|Titel= Aufgabe | |||
|Inhalt= Zum Verpacken eines Fernsehgerätes wird ein Karton mit 60 cm Höhe und mit einem Volumen von 264 Litern benötigt.<br/> | |||
Die Seitenlängen der Grundfläche unterscheiden sich um 25 cm. Wie lang sind diese? | |||
{{Lösung versteckt|1= Beginne mit der Anpassung der Einheiten.|2=Tipp 1|3=schließen}} | {{Lösung versteckt|1= Beginne mit der Anpassung der Einheiten.|2=Tipp 1|3=schließen}} | ||
{{Lösung versteckt|1= Bestimme die Grundfläche.|2=Tipp 2|3=schließen}} | {{Lösung versteckt|1= Bestimme die Grundfläche.|2=Tipp 2|3=schließen}} | ||
{{Lösung versteckt|1= a = 80 cm und b = 55 cm}} | {{Lösung versteckt|1= a = 80 cm und b = 55 cm}} | ||
{{Box| | |Farbe= #0077dd | ||
|Hintergrund= #54ff9f | |||
|Icon= <span class="brainy hdg-pin"></span> | |||
}} | |||
{{Box-spezial | |||
|Titel= Aufgaben im Lehrbuch (Buchner Klasse 9) | |||
|Inhalt= Bearbeite die folgenden Aufgaben im Heft. Die CAS-App ist erlaubt. <br/> | |||
* Seite 94 Nr. 7, 8 und 9 <br/> | * Seite 94 Nr. 7, 8 und 9 <br/> | ||
| | |Farbe= #0077dd | ||
|Hintergrund= #FFFF00 | |||
|Icon= <span class="brainy hdg-pin"></span> | |||
}} | |||
{{Box-spezial | {{Box-spezial | ||
|Titel= Als Abschluss noch ein Learningsnack | |Titel= Als Abschluss noch ein Learningsnack | ||
|Inhalt= [[https://www.learningsnacks.de/share/163547/ Der Snack]] | |Inhalt= [[https://www.learningsnacks.de/share/163547/ Der Snack]] | ||
|Farbe= #0077dd | |Farbe= #0077dd | ||
|Hintergrund= #A8DF4A | |Hintergrund= #A8DF4A | ||
|Icon= <span class="brainy hdg-dinosaur"></span> | |Icon= <span class="brainy hdg-dinosaur"></span> | ||
}} | }} | ||
<br/> | <br/> | ||
Aktuelle Version vom 17. April 2025, 14:36 Uhr
Übungen "Lineare Funktion" zur Wiederholung
Darstellungsformen der quadratischen Funktion
Allgemeine Aussagen
Die Normalparabel
Die Normalparabel zeichnen und grundlegende Eigenschaften
Die Scheitelpunktform
Die quadratische Funktion in der Form
Die quadratische Funktion in der Form
Die Normalform
Eigenschaften der Funktion
| Definitionsbereich: | alle x ∈ R |
|---|---|
| Wertebereich: | y ∈ R, Menge der reellen Zahlen, die größer als die y–Koordinate des Scheitels sind |
| Scheitelpunkt: | wird von p und q beeinflusst, Berechnung erfolgt später |
| Monotonie: | bis zum Scheitel monoton fallend |
| ab dem Scheitel monoton steigend | |
| Symmetrieachse: | eine Parallele zur y – Achse, die durch den Scheitelpunkt verläuft |
Die allgemeine Form
Begriffe
| quadratisches Glied im Term | |
| lineares Glied im Term | |
| konstantes Glied im Term |
Eigenschaften der Funktion
| Definitionsbereich: | alle x ∈ R |
|---|---|
| Wertebereich: | y ∈ R, Menge der reellen Zahlen, die größer bzw. kleiner als die y–Koordinate des Scheitels sind |
| Scheitelpunkt: | |
| Form der Parabel: | a=1 (verschobene) Normalparabel |
| nach oben geöffnet für a > 0 | |
| nach unten geöffnet für a < 0 | |
| gestreckt für | |
| gestaucht für | |
| Monotonie: | Für ist die Funktion ... |
| monoton steigend, wenn gilt. | |
| monoton steigend, wenn gilt. | |
| Symmetrie: | achsensymmetrisch |
Umwandlung aus der allgemeinen Form in die Scheitelpunktform
Anwendungsaufgaben

