Benutzer:Buss-Haskert/Trigonometrie/Sinus,Kosinus,Tangens: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(38 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
SEITE IM AUFBAU
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
<br>
<br>
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]]
{{Navigation|[[Benutzer:Buss-Haskert/Trigonometrie|Startseite (Vorwissen)]]<br>
{{Navigation|[[Benutzer:Buss-Haskert/Trigonometrie|Startseite (Vorwissen)]]<br>
[[Benutzer:Buss-Haskert/Trigonometrie/Sinus,Kosinus,Tangens|1) Sinus, Kosinus, Tangens]]<br>
[[Benutzer:Buss-Haskert/Trigonometrie/Sinus,Kosinus,Tangens|1) Sinus, Kosinus, Tangens]]<br>
[[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in rechtwinkligen Dreiecken|2) Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken]]<br>
[[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in rechtwinkligen Dreiecken|2) Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken]]<br>
[[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in allgemeinen Dreiecken|3) Berechnungen in allgemeinen Dreiecken]]<br>
[[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in allgemeinen Dreiecken|3) Berechnungen in allgemeinen Dreiecken]]<br>
[[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in beliebigen Figuren|4) Berechnungen in beliebigen Figuren]]}}
[[Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in beliebigen Figuren|4) Berechnungen in beliebigen Figuren]]<br>
[[Benutzer:Buss-Haskert/Trigonometrie/Sinusfunktion|5) Sinusfunktion und Kosinusfunktion]]}}
<br>
<br>


Zeile 12: Zeile 13:
<br>
<br>


===1.1 Steigung einer Straße===
===1.1 Entdecken: Steigung einer Straße===
<small>Der Einstieg ist angelehnt an das Material  des Landesbildungsservers BW https://www.schule-bw.de/faecher-und-schularten/mathematisch-naturwissenschaftliche-faecher/mathematik/unterrichtsmaterialien/sekundarstufe1/geometrie/trig/trigors/lernumgebung/index.html Es wurde unter der Lizenz CC BY veröffentlicht.</small>
<small>Der Einstieg ist angelehnt an das Material  des Landesbildungsservers BW https://www.schule-bw.de/faecher-und-schularten/mathematisch-naturwissenschaftliche-faecher/mathematik/unterrichtsmaterialien/sekundarstufe1/geometrie/trig/trigors/lernumgebung/index.html Es wurde unter der Lizenz CC BY veröffentlicht.</small>
<br><br>
<br><br>
Zeile 20: Zeile 21:
Das Verkehrsschild gibt die Steigung einer Straße in Prozent an.<br>
Das Verkehrsschild gibt die Steigung einer Straße in Prozent an.<br>
a) Was bedeutet die Angabe von 12% Steigung? Erkläre!  
a) Was bedeutet die Angabe von 12% Steigung? Erkläre!  
{{Lösung versteckt|Verwende die Begriffe Höhenunterschied und Horziontalunterschied|Tipp 1|Verbergen}}
{{Lösung versteckt|Verwende die Begriffe Höhenunterschied und Horizontalunterschied|Tipp 1|Verbergen}}
{{Lösung versteckt|[[Datei:Höhenunterschied Horizontalunterschied.png|rahmenlos]]|Tipp 2|Verbergen}}
{{Lösung versteckt|[[Datei:Höhenunterschied Horizontalunterschied.png|rahmenlos]]|Tipp 2|Verbergen}}
{{Lösung versteckt|1=[[Datei:Steigung 12% Dreieck.png|rahmenlos|500px]]<br>Steigung p% = <math>\frac{\text{Höhenunterschied}}{\text{Horizontalunterschied}}</math> = <math>\frac{12}{100}</math>=12%|2=Tipp 3|3=Verbergen}}
{{Lösung versteckt|1=[[Datei:Steigung 12% Dreieck.png|rahmenlos|500px]]<br>Steigung p% = <math>\frac{\text{Höhenunterschied}}{\text{Horizontalunterschied}}</math> = <math>\frac{12}{100}</math>=12%|2=Tipp 3|3=Verbergen}}
Zeile 36: Zeile 37:
[[Datei:Steigungswinkel.png|rahmenlos|600px]]<br><br>
[[Datei:Steigungswinkel.png|rahmenlos|600px]]<br><br>


Das nachfolgende Applet zeigt diese drei Möglichkeiten noch einmal. Verändere die Steigung mithilfe des Schiebereglers und beobachte, was passiert.
Das nachfolgende Applet zeigt diese drei Möglichkeiten noch einmal. Verändere die Steigung mithilfe des Schiebereglers und beobachte, was passiert.<br>
Orinigallink: https://www.geogebra.org/m/mSrdeKv9
<ggb_applet id="mSrdeKv9" width="520" height="400" border="888888" /><br>
<ggb_applet id="mSrdeKv9" width="520" height="400" border="888888" /><br>
<small>Applet von holo2012</small><br>
<small>Applet von holo2012</small><br>
Zeile 52: Zeile 54:
Das Seitenverhältnis hängt nicht von der Größe der Dreiecke ab, sondern nur vom Winkel α. <br>
Das Seitenverhältnis hängt nicht von der Größe der Dreiecke ab, sondern nur vom Winkel α. <br>
<br><br>
<br><br>
Bewege die Punkte B<sub>1</sub>, B<sub>2</sub> und C<sub>1</sub> und beobachte die Seitenverhältnisse.
{{Box|Entdecken: Seitenverhältnisse in rechtwinkligen Dreiecken|Bearbeite die Aufgaben mithilfe des nachfolgenden Applets.
<ggb_applet id="zanbxdhr" width="1692" height="824" border="888888" />
* Verändere durch Verschieben des Punktes C die Längen der Dreiecksseiten. Der Winkel soll gleich bleiben. Was stellst du für die Seitenverhältnisse <math>\tfrac{a}{c}; \tfrac{b}{c} und \tfrac{a}{b}</math> fest? Notiere im Heft.
* Verändere nun mithilfe des Schiebereglers die Größe des Winkels α. Welche Veränderungen ergeben sich bei den Dreiecksseiten und den Seitenverhältnissen? Notiere im Heft.|Arbeitsmethode}}<br>
Originallink zum Applet: https://www.geogebra.org/m/nnmx7cpz
<ggb_applet id="nnmx7cpz" width="986" height="620" border="888888" />
<small>Applet von C. Buß-Haskert</small>
<br>
{{Lösung versteckt|1=Auch das folgende Applet zeigt die obigen Beobachtungen noch einmal.
Bewege die Punkte B<sub>1</sub>, B<sub>2</sub> und C<sub>1</sub> und beobachte die Seitenverhältnisse.<br>
Originallink: https://www.geogebra.org/m/zanbxdhr
<ggb_applet id="zanbxdhr" width="1692" height="824" border="888888" />|2=weiteres Applet zu den Seitenverhätnissen|3=Verbergen}}
<br><br>
<br><br>
===1.2 Definition: Sinus, Kosinus und Tangens: Streckenverhältinisse in rechwinkligen Dreiecken===
{{Box|Seitenverhältnisse in rechtwinkligen Dreiecken|In ähnlichen '''rechtwinkligen''' Dreiecken gilt:<br>
{{Box|Seitenverhältnisse in rechtwinkligen Dreiecken|In ähnlichen '''rechtwinkligen''' Dreiecken gilt:<br>
Das Seitenverhältnis hängt nicht von der Größe der Dreiecke ab, sondern nur vom Winkel α.<br>
Das Seitenverhältnis hängt nicht von der Größe der Dreiecke ab, sondern nur vom Winkel α.<br>
Zeile 60: Zeile 72:
In einem rechtwinkligen Dreieck bezeichnet man die Katheten bezogen auf den Winkel (z.B. <math>\alpha</math>) mit besonderen Namen:<br>
In einem rechtwinkligen Dreieck bezeichnet man die Katheten bezogen auf den Winkel (z.B. <math>\alpha</math>) mit besonderen Namen:<br>
[[Datei:Bezeichnungen am rechtwinkligen Dreieck.png|rahmenlos|600x600px]]
[[Datei:Bezeichnungen am rechtwinkligen Dreieck.png|rahmenlos|600x600px]]
<br>
{{Box|1=Übung 1 - Begriffe Ankathete, Gegenkathete und Hypotenuse in rechtwinkligen Dreiecken|2=Beschrifte bzw. kennzeichne in den nachfolgenden online-Übungen die Seiten mit den passenden Begriffen.
{{LearningApp|app=py8i8j00323|width=100%|height=800px}}
<br>
Wähle aus, welche Seite markiert werden soll. Präge dir die Namen und die besondere Lage der Seiten zum jeweiligen Winkel ein.<br>
Originallink: https://www.geogebra.org/m/zrrpdt9b
<ggb_applet id="arvwre7z" width="700" height="400" border="888888" /><small>Applet von T. Traub</small>|3=Üben}}
<br>
<br>
{{Box|1=Sinus, Kosinus, Tangens|2=In einem rechtwinkligen Dreieck (mit <math>\gamma</math>=90°) bezeichnet man die Seitenverhältnisse wie folgt:
{{Box|1=Sinus, Kosinus, Tangens|2=In einem rechtwinkligen Dreieck (mit <math>\gamma</math>=90°) bezeichnet man die Seitenverhältnisse wie folgt:
Zeile 72: Zeile 92:
[[Datei:Hen-3163515 1280.png|rechts|rahmenlos|150px]] Die '''<big>GAGA- Hühnerhof AG</big>''':
[[Datei:Hen-3163515 1280.png|rechts|rahmenlos|150px]] Die '''<big>GAGA- Hühnerhof AG</big>''':
G steht dabei für die '''G'''egenkathete, A für die '''A'''nkathete und H für die '''H'''ypotenuse im Dreiecks.
G steht dabei für die '''G'''egenkathete, A für die '''A'''nkathete und H für die '''H'''ypotenuse im Dreiecks.
[[Datei:GAGA HH AG.png|rahmenlos|500px]]<br>
[[Datei:GAGA HH AG.png|rahmenlos|500px]]
<br>
<br>
<br>
<ggb_applet id="arvwre7z" width="700" height="400" border="888888" /><small>Applet von T. Traub</small>
===1.3 Übungen: Sinus, Kosinus und Tangens - Streckenverhältnisse in rechtwinkligen Dreiecken===
 
<br>{{LearningApp|app=p66g51opj21|width=100%|height=600px}}


{{Box|Übung 1|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die Aufgaben
{{Box|1=Übung 2 - Streckenverhältnisse in rechtwinkligen Dreiecken|2={{LearningApp|app=p66g51opj21|width=100%|height=600px}}
Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die Aufgaben
* 4
* 4
* 6
* 6
und auf der Seite realmath die folgenden Übungen
und auf der Seite realmath die folgenden Übungen
* [https://www.realmath.de/Neues/10zwo/trigo/winkelfunktionen2.html Übung 1 (realmath)]
* [https://realmath.de/Neues/10zwo/trigo/winkelfunktionen2.php Übung 1 (realmath)]
* [https://www.realmath.de/Neues/10zwo/trigo/winkelfunktionen3b.html Übung 2 (realmath)]|Üben}}
* [https://realmath.de/Neues/10zwo/trigo/winkelfunktionen3b.php Übung 2 (realmath)]|3=Üben}}


{{Box|Übung 2|Löse aus dem Buch  
{{Box|Übung 3 - Streckenverhältnisse in rechtwinkligen Dreiecken|Löse aus dem Buch  
* S. 91 Nr. 5
* S. 91, Nr. 5
* S. 91 Nr. 6
* S. 91, Nr. 6
* S. 110 Nr. 3|Üben}}
* S. 110, Nr. 3|Üben}}
{{Lösung versteckt|1=Diese Figur besteht aus drei rechtwinkligen Drieecken:<br>
{{Lösung versteckt|1=Diese Figur besteht aus drei rechtwinkligen Dreiecken:<br>
Dreieck ABC, Dreieck BCD und Dreieck ACD.<br>
Dreieck ABC, Dreieck BCD und Dreieck ACD.<br>
Im Dreieck ABC ist die Seite c die Hypotenuse, im Dreieck BCD ist die Seite a die Hypotenuse und im Dreieck ACD ist die Seite b die Hypotenuse.|2=Tipp zu Nr. 5|3=Verbergen}}
Im Dreieck ABC ist die Seite c die Hypotenuse, im Dreieck BCD ist die Seite a die Hypotenuse und im Dreieck ACD ist die Seite b die Hypotenuse.|2=Tipp zu Nr. 5|3=Verbergen}}
Zeile 98: Zeile 118:
<br>
<br>
<br>
<br>
{{Box|Übung 3 (online)|Löse die nachfolgenden Übungen der Seite dwu - Unterrichtsmaterialien:
{{Box|Übung 4 (online) - Streckenverhältnisse in rechtwinkligen Dreiecken|Löse die nachfolgenden Übungen der Seite dwu - Unterrichtsmaterialien:
* [https://www.zum.de/dwu/depothp/hp-math/hpmwf01.htm '''Übung 1''']
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmwf01.htm '''Übung 1''']
* [https://www.zum.de/dwu/depothp/hp-math/hpmwf02.htm '''Übung 2''']
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmwf02.htm '''Übung 2''']
* [https://www.zum.de/dwu/depothp/hp-math/hpmwf03.htm '''Übung 3''']
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmwf03.htm '''Übung 3''']
* [https://www.zum.de/dwu/depothp/hp-math/hpmwf04.htm '''Übung 4''']
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmwf04.htm '''Übung 4''']
* [https://www.zum.de/dwu/depothp/hp-math/hpmwf05.htm '''Übung 5''']
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmwf05.htm '''Übung 5''']
* [https://www.zum.de/dwu/depothp/hp-math/hpmwf11.htm '''Übung 6''']
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmwf11.htm '''Übung 6''']
* [https://www.zum.de/dwu/depothp/hp-math/hpmwf12.htm '''Übung 7''']
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmwf12.htm '''Übung 7''']
* [https://www.zum.de/dwu/depothp/hp-math/hpmwf13.htm '''Übung 8''']
* [https://dwu-unterrichtsmaterialien.de/depothp/hp-math/hpmwf13.htm '''Übung 8''']
* [https://www.zum.de/dwu/depothp/hp-math/hpmwf13.htm '''Übung 9''']
|Üben}}
|Üben}}
<br>
<br>
====Zwischentest 1: Streckenverhältnisse in rechtwinkligen Dreiecken====
[[Datei:Dreieck unterteilt in Teildreiecke neu.png|rahmenlos|400x400px]]
<quiz display="simple">
{ Welche Aussagen sind richtig? Kreuze an.}
- sinα = <math>\tfrac{h}{c}</math>
+ sinα = <math>\tfrac{a}{c}</math>
+ cosα = <math>\tfrac{b}{c}</math>
- b·tanα = i
{ Ergänze zu einer wahren Aussage.
<math>\tfrac{q}{a}</math> = ...}
+ cosβ
- sinβ
- tanβ
- sinα
{ Ergänze zu einer wahren Aussage.
<math>\tfrac{b}{p+q}</math> = ...}
- sinα
+ cosα
+ sinβ
- cosβ
{ Ergänze zu einer wahren Aussage.
tanβ = ...}
+ <math>\tfrac{b}{a}</math>
- <math>\tfrac{a}{b}</math>
+ <math>\tfrac{h}{q}</math>
- <math>\tfrac{h}{a}</math>
</quiz>
<br>
<br>
===1.4 Werte von sin, cos, tan berechnen===
In den vorausgegangenen Übungen hast du jeweils die Seitenverhältnisse für Sinus, Kosinus und Tangens benannt.  
In den vorausgegangenen Übungen hast du jeweils die Seitenverhältnisse für Sinus, Kosinus und Tangens benannt.  
Wenn du die Länge der Seiten kennst, kannst du den Wert dieser Seitenverhältnisse berechnen.<br>
Wenn du die Länge der Seiten kennst, kannst du den Wert dieser Seitenverhältnisse berechnen.<br>
Zeile 117: Zeile 169:
{{#ev:youtube|a9xVFmL13ww|800|center}}
{{#ev:youtube|a9xVFmL13ww|800|center}}
<br>
<br>
{{Box|Übung 4|Löse wie im Video aus dem Buch. Notiere die Seitenverhältnisse als Bruch und runde anschließend auf zwei Nachkommastellen.
{{Box|Übung 5 - Werte von sin, cos, tan berechnen|Löse wie im Video aus dem Buch. Notiere die Seitenverhältnisse als Bruch und runde anschließend auf zwei Nachkommastellen.
* S. 91 Nr. 1
* S. 91, Nr. 1
* S. 91 Nr. 2|Üben}}
* S. 91, Nr. 2|Üben
}}
{{Lösung versteckt|1=sin <math>\alpha</math> = <math>\tfrac{8}{17}</math> <math>\approx</math> 0,47<br>
{{Lösung versteckt|1=sin <math>\alpha</math> = <math>\tfrac{8}{17}</math> <math>\approx</math> 0,47<br>
cos<math>\alpha</math> = <math>\tfrac{15}{17}</math> <math>\approx</math> 0,88<br>
cos<math>\alpha</math> = <math>\tfrac{15}{17}</math> <math>\approx</math> 0,88<br>
Zeile 125: Zeile 178:
{{Lösung versteckt|1=Es fällt auf, dass sin <math>\alpha</math> = cos<math>\beta</math> und sin <math>\beta</math> = cos<math>\alpha</math>|2=Tipp zu Nr. 2|3=Verbergen}}
{{Lösung versteckt|1=Es fällt auf, dass sin <math>\alpha</math> = cos<math>\beta</math> und sin <math>\beta</math> = cos<math>\alpha</math>|2=Tipp zu Nr. 2|3=Verbergen}}
<br>
<br>
{{Box|Übung 5|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die Aufgaben
{{Box|Übung 6 - Werte von sin, cos, tan berechnen|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die Aufgaben
* 5
* 5
Was fällt dir auf? Kannst du deine Beobachtung begründen?|Üben}}
Was fällt dir auf? Kannst du deine Beobachtung begründen?|Üben}}
Zeile 147: Zeile 200:
</div>
</div>


Du hast also  sin 38° <math>\approx</math> 0,62 berechnet. Dies kannst du mit der Simulation auf der Seite Aufgabenfuchs oben oder mit der nachfolgenden überprüfen.
Du hast also  sin 38° <math>\approx</math> 0,62 berechnet. Dies kannst du mit der Simulation auf der Seite Aufgabenfuchs oben oder mit der nachfolgenden überprüfen.<br>
<br>
Originallink: https://www.geogebra.org/m/whswnkvg<br>
<ggb_applet id="whswnkvg" width="1532" height="909" border="888888" />
<ggb_applet id="whswnkvg" width="1532" height="909" border="888888" />
<br>
<br>
Zeile 155: Zeile 208:
<br>
<br>
<br>
<br>
{{Box|Übung 6|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die Aufgaben
Der Wert von Sinus, Kosinus und Tangens ist abhängig vom Winkel α. Jedem Sinuswert, Kosinuswert und Tangenswert ist ein Winkel zugeordnet. Den '''Winkel berechnest''' du mit der jeweiligen Umkehrfunktion '''sin<sup>-1</sup>, cos<sup>-1</sup>''' bzw. '''tan<sup>-1</sup>''' dem Taschenrechner, indem du die "SHIFT" Taste nutzt: <br>
* 7|Üben}}
<div class="grid">
<div class="width-1-5">[[Datei:Taschenrechner Bild shift markiert.png|rahmenlos|290x290px]]</div>
<div class="width-1-5">[[Datei:Taschenrechner Bild sin markiert rot.png|rahmenlos|290x290px]]</div>


</div>
<br>
{{Box|Übung 7- Sinus-, Kosinus- und Tangenswerte berechnen|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/flaeche/dreieck/trigonometrie.shtml '''Aufgabenfuchs'''] die Aufgaben
* Sinus: 9
* Kosinus: 18
* Tangens: 26|Üben}}


{{Box|Übung 7|Löse aus dem Buch
* S. 91 Nr. 3
* S. 91 Nr. 4|Üben}}


{{Lösung versteckt|Prüfe deine Lösungen zu den Sinuswerten mithilfe der Simulation über Übung 5.|Tipp zu Nr. 3 und Nr. 4}}
{{Box|Übung 8|Löse aus dem Buch
* S. 91, Nr. 3
* S. 91, Nr. 4 (hier mündlich mithilfe der Simulation unten)|Üben
}}
Originallink: https://www.geogebra.org/m/wqjqhqd7<br>
<ggb_applet id="wqjqhqd7" width="1050" height="439" border="888888" />
<small>Applet von Buß-Haskert</small>
{{Lösung versteckt|1= Berechne β mithilfe der Winkelsumme im Dreieck. (β = 180° - 90° - 38° = ...)<br>
Prüfe deine Lösungen zu den Sinuswerten mithilfe der Simulation über Übung 5.|2=Tipp zu Nr. 3|3=Verbergen}}
{{Lösung versteckt|1=Die Sinuswerte und Kosinuswerte sind in umgekehrter Reihenfolge gleich. Es gilt sin α = cos (90° – α).<br>
{{Lösung versteckt|1=Die Sinuswerte und Kosinuswerte sind in umgekehrter Reihenfolge gleich. Es gilt sin α = cos (90° – α).<br>
Die Werte für tan α werden immer größer, je näher α dem Wert 90° ist.|2=Beobachtung zu Nr. 4|3=Verbergen}}
Die Werte für tan α werden immer größer, je näher α dem Wert 90° ist.|2=Beobachtung zu Nr. 4|3=Verbergen}}





Aktuelle Version vom 10. März 2025, 10:20 Uhr


Schullogo HLR.jpg


1) Sinus, Kosinus, Tangens - Seitenverhältnisse in rechtwinkligen Dreiecken


1.1 Entdecken: Steigung einer Straße

Der Einstieg ist angelehnt an das Material des Landesbildungsservers BW https://www.schule-bw.de/faecher-und-schularten/mathematisch-naturwissenschaftliche-faecher/mathematik/unterrichtsmaterialien/sekundarstufe1/geometrie/trig/trigors/lernumgebung/index.html Es wurde unter der Lizenz CC BY veröffentlicht.

Steigung 12%.png
Es gibt mehrere Möglichkeiten, die Steigung einer Straße anzugeben:

1. Angabe in Prozent Das Verkehrsschild gibt die Steigung einer Straße in Prozent an.
a) Was bedeutet die Angabe von 12% Steigung? Erkläre!

b) Gibt es eine Steigung, die größer als 100% ist?



2. Angabe mithilfe des Steigungsdreiecks und m

Die Steigung einer Geraden f(x) = mx + b gibt der Faktor m an. Dazu zeichnest du das Steigungsdreieck.
Steigungsdreieck 12%.png

m = = 0,12



3. Angabe mithilfe des Steigungswinkels α Steigungswinkel.png

Das nachfolgende Applet zeigt diese drei Möglichkeiten noch einmal. Verändere die Steigung mithilfe des Schiebereglers und beobachte, was passiert.
Orinigallink: https://www.geogebra.org/m/mSrdeKv9


Applet von holo2012

Versuche herauszufinden, welcher Zusammenhang zwischen den verschiedenen Darstellungsmöglichkeiten besteht.

1.     Verändere die Höhe und beobachte die anderen Angaben zur Steigung.

2.     Aktiviere das Kontrollkästchen "Steigung eines beliebigen Punktes auf der Straße" und verschiebe den Punkt P entlang der Straße.

Ergebnis: In den ähnlichen (rechtwinkligen) Dreiecken gilt:

Ähnliche Dreiecke.png

Das Seitenverhältnis hängt nicht von der Größe der Dreiecke ab, sondern nur vom Winkel α.


Entdecken: Seitenverhältnisse in rechtwinkligen Dreiecken

Bearbeite die Aufgaben mithilfe des nachfolgenden Applets.

  • Verändere durch Verschieben des Punktes C die Längen der Dreiecksseiten. Der Winkel soll gleich bleiben. Was stellst du für die Seitenverhältnisse fest? Notiere im Heft.
  • Verändere nun mithilfe des Schiebereglers die Größe des Winkels α. Welche Veränderungen ergeben sich bei den Dreiecksseiten und den Seitenverhältnissen? Notiere im Heft.


Originallink zum Applet: https://www.geogebra.org/m/nnmx7cpz

Applet von C. Buß-Haskert



1.2 Definition: Sinus, Kosinus und Tangens: Streckenverhältinisse in rechwinkligen Dreiecken

Seitenverhältnisse in rechtwinkligen Dreiecken

In ähnlichen rechtwinkligen Dreiecken gilt:
Das Seitenverhältnis hängt nicht von der Größe der Dreiecke ab, sondern nur vom Winkel α.

Diesen Zusammenhang zwischen Winkelgröße und Seitenlängen im rechtwinkligen Dreieck beschreiben die Winkelfunktionen Sinus, Kosinus und Tangens.

In einem rechtwinkligen Dreieck bezeichnet man die Katheten bezogen auf den Winkel (z.B. ) mit besonderen Namen:
Bezeichnungen am rechtwinkligen Dreieck.png

Übung 1 - Begriffe Ankathete, Gegenkathete und Hypotenuse in rechtwinkligen Dreiecken

Beschrifte bzw. kennzeichne in den nachfolgenden online-Übungen die Seiten mit den passenden Begriffen.


Wähle aus, welche Seite markiert werden soll. Präge dir die Namen und die besondere Lage der Seiten zum jeweiligen Winkel ein.
Originallink: https://www.geogebra.org/m/zrrpdt9b

Applet von T. Traub


Sinus, Kosinus, Tangens

In einem rechtwinkligen Dreieck (mit =90°) bezeichnet man die Seitenverhältnisse wie folgt:

Sinus anschaulich.png
Kosinus anschaulich.png
Tangens anschaulich.png


Es gibt eine Eselsbrücke, mit der du dir die Streckenverhältnisse merken kannst:

Hen-3163515 1280.png

Die GAGA- Hühnerhof AG:

G steht dabei für die Gegenkathete, A für die Ankathete und H für die Hypotenuse im Dreiecks. GAGA HH AG.png

1.3 Übungen: Sinus, Kosinus und Tangens - Streckenverhältnisse in rechtwinkligen Dreiecken

Übung 2 - Streckenverhältnisse in rechtwinkligen Dreiecken

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 4
  • 6

und auf der Seite realmath die folgenden Übungen


Übung 3 - Streckenverhältnisse in rechtwinkligen Dreiecken

Löse aus dem Buch

  • S. 91, Nr. 5
  • S. 91, Nr. 6
  • S. 110, Nr. 3



Übung 4 (online) - Streckenverhältnisse in rechtwinkligen Dreiecken

Löse die nachfolgenden Übungen der Seite dwu - Unterrichtsmaterialien:


Zwischentest 1: Streckenverhältnisse in rechtwinkligen Dreiecken

Dreieck unterteilt in Teildreiecke neu.png

1 Welche Aussagen sind richtig? Kreuze an.

sinα =
sinα =
cosα =
b·tanα = i

2 Ergänze zu einer wahren Aussage. = ...

cosβ
sinβ
tanβ
sinα

3 Ergänze zu einer wahren Aussage. = ...

sinα
cosα
sinβ
cosβ

4 Ergänze zu einer wahren Aussage. tanβ = ...


1.4 Werte von sin, cos, tan berechnen

In den vorausgegangenen Übungen hast du jeweils die Seitenverhältnisse für Sinus, Kosinus und Tangens benannt. Wenn du die Länge der Seiten kennst, kannst du den Wert dieser Seitenverhältnisse berechnen.
Dieser hängt ab vom Winkel, wie oben erarbeitet.
Schau dazu das folgende Video an:


Übung 5 - Werte von sin, cos, tan berechnen

Löse wie im Video aus dem Buch. Notiere die Seitenverhältnisse als Bruch und runde anschließend auf zwei Nachkommastellen.

  • S. 91, Nr. 1
  • S. 91, Nr. 2


Übung 6 - Werte von sin, cos, tan berechnen

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 5
Was fällt dir auf? Kannst du deine Beobachtung begründen?




Die Werte der Seitenverhältnisse hängen ab vom Winkel. Ist in einem rechtwinkligen Dreieck (mit =90°) der Winkel = 10°, so ist das Seitenverhältnis sin = immer gleich groß. Diesen Wert kannst du mit deinem Taschenrechner bestimmen. Die Bildreihenfolge zeigt dir, wie du z.B. den Sinuswert für den Winkel =38° mit bestimmst.

Taschenrechner Bild sin markiert.png
Taschenrechner Bild 38 markiert.png
Taschenrechner Bild Klammer markiert.png
Taschenrechner Bild Gleichzeichen markiert.png
Taschenrechner sin(.png
Taschenrechner sin(38.png
Taschenrechner sin(38).png
Taschenrechner sin(38) Wert.png

Du hast also sin 38° 0,62 berechnet. Dies kannst du mit der Simulation auf der Seite Aufgabenfuchs oben oder mit der nachfolgenden überprüfen.
Originallink: https://www.geogebra.org/m/whswnkvg


Ebenso berechnest du mit dem Taschenrechner die Werte für den Kosinus (mit der Taste "cos") und den Tangens (mit "tan").

Der Wert von Sinus, Kosinus und Tangens ist abhängig vom Winkel α. Jedem Sinuswert, Kosinuswert und Tangenswert ist ein Winkel zugeordnet. Den Winkel berechnest du mit der jeweiligen Umkehrfunktion sin-1, cos-1 bzw. tan-1 dem Taschenrechner, indem du die "SHIFT" Taste nutzt:

Taschenrechner Bild shift markiert.png
Taschenrechner Bild sin markiert rot.png


Übung 7- Sinus-, Kosinus- und Tangenswerte berechnen

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • Sinus: 9
  • Kosinus: 18
  • Tangens: 26


Übung 8

Löse aus dem Buch

  • S. 91, Nr. 3
  • S. 91, Nr. 4 (hier mündlich mithilfe der Simulation unten)

Originallink: https://www.geogebra.org/m/wqjqhqd7

Applet von Buß-Haskert