Die binomische Formeln sind drei Sonderfälle bei der Multiplikation von Summen. Die Ergebnisse lassen sich hier leicht zusammenfassen und so die ausführlichen Berechnungen abkürzen.
Durch entsprechende Figuren lassen sie sich auch gut anschaulich erklären.
Vorübung: Wiederholung Quadratzahlen
Bearbeite die nachfolgenden LearningApps. Tipp: Du muss die Quadratzahlen auswendig können (siehe Tipp)
Übertrage die Herleitung und die Beispiele in dein Heft.
(a + b)²= a² + 2ab + b²
Übung
Übung 1: 1. binomische Formel
Bearbeite die nachfolgenden LearningApps (anmelden).
2. binomische Formel
Herleitung der 2. binomischen Formel
Das GeoGebra-Applet leitet anschaulich die 2. binomische Formel her. Erkläre deinem Partner die einzelnen Schritte.
Originallink: https://www.geogebra.org/m/HRqRgykt
Beispiele:
2. binomische Formel
Übertrage die Herleitung und die Beispiele in dein Heft.
(a - b)² = a² - 2ab + b²
Übung
Übung 2: 2. binomische Formel
Bearbeite die nachfolgenden LearningApps (anmelden).
Übung 3: 1. und 2. binomische Formel
Löse die Aufgaben aus dem Buch. Schreibe die Aufgabe ab und löse die Klammern mithilfe der binomischen Formeln auf (Tipp unten).
S. 15, Nr. 3
S. 20, Nr. 10
S. 22, Nr. 10.
Kontrolliere deine Lösungen (als Variablen sind nur x und y erlaubt):
Applet von Thorsten Glaser
Bei den Aufgaben auf S. 15 Nr. 3 handelt es sich jeweils um die 1. bzw. 2. binomische Formel. Löse also die Klammern auf, wie in den Learningapps oben. Notiere - falls nötig - Zwischenschritte.
Die Lösungen zu den grünen Seiten findest du zum Vergleich hinten im Buch!
3. binomische Formel
Herleitung der 3. binomischen Formel
Das GeoGebra-Applet leitet anschaulich die 3. binomische Formel her. Erkläre deinem Partner die einzelnen Schritte.
Beispiele:
3. binomische Formel
Übertrage die Herleitung und die Beispiele in dein Heft. (a+b)(a-b) = a² - b²
Übung
Übung 4: 3. binomische Formel
Bearbeite die nachfolgenden LearningApps.
Zusammenfassung
Das nachfolgende Video fasst die binomischen Formeln noch einmal zusammen.
Nun hast du alle drei binomischen Formeln kennengelernt. Höre das Lied dazu an, dann kannst du dir die Formeln gut merken (es ist ein Ohrwurm!😉).
Vermischte Übungen zu den binomischen Formeln
Übung 5
Löse auf der Seite realmath so viele Aufgaben, dass du die 300 Punkte-Marke knackst.
Bearbeite die nachfolgenden LearningApps und Quizze.
(Quizz von B. Lachner)
Übung 7
Löse die Aufgaben aus dem Buch. Notiere deine Rechnungen in dein Heft.
S. 16, Nr. 6
S. 16, Nr. 7
S. 16, Nr. 9
S. 16, Nr. 11.
Löse Nr. 11 schrittweise:
Wende zuerst die binomischen Formeln an. Prüfe dann, ob zum Auflösen der Klammer noch ein weitere Schritt notwendig ist (wenn z.B. ein Minuszeichen vor der Klammer steht). Fasse danach zusammen.
Übung: Quadratzahlen und besondere Produkte mit den binomischen Formeln berechnen
Die 1. und 2. binomische Formel helfen beim Berechnen von größeren Quadratzahlen.
Berechnung von Quadratzahlen mit binomische Formeln
Schreibe die Beispiele unten in dein Heft. Erkläre, wie die binomischen Formeln dir beim Rechnen helfen. Wann wendest du die 1., die 2. oder die 3. binomische Formel an?
Frau Müller besitzt ein quadratisches Grundstück. Dort soll eine Straße gebaut werden. Man bietet ihr zum Tausch ein rechteckiges Grundstück an. Das ist auf der einen Seite 3m kürzer und zum Ausgleich auf der anderen Seite 3m länger als ihr bisheriges Grundstück. Ist dieser Tausch fair?
Benenne die Länge des quadratischen Grundstückes mit x. Nun hilft eine Skizze:
Schau das Video an und übertrage die Idee auf die Aufgabe.
Übung 9b: Grundstückstausch 2
Löse die Aufgabe aus dem Buch.
S. 21, Nr. 7b
4. Binomische Formeln "rückwärts" - Faktorisieren mit binomischen Formeln
Du kannst bestimmte Summen mithilfe der binomischen Formeln in ein Produkt verwandeln. Dazu müssen die Summen die Form einer binomischen Formel haben.
Binomische Formeln "rückwärts" - Faktorisieren mit binomischen Formeln
Gib die folgenden Summen als Produkte an:
a) a² + 2ab + b² = (........)² x² + 18x + 81 = (......)²
b) a² - 2ab + b² = (.........)² 64x² - 48xy + 9y² = (......)²
c) a² - b² = (.......)·(.......) 4x² - 121y² = (......)·(......)
Wie gehst du vor? Erkläre!
Erinnerung: a²+2ab+b²=(a+b)² Hier handelt es sich auf der linken Seite um den Summenterm der 1. binomische Formel, also muss das Produkt (a+b)(a+b) heißen, bzw. kurz (a+b)².
Ebenso ist x² + 18x + 81 der Summenterm von (x+9)², denn (x+9)² = x² + 2·x·9 + 9² = x² + 18x + 81. Du musst also die 1. binomische Formel "rückwärts" anwenden.
Erinnerung: a²-2ab+b²=(a-b)² Hier handelt es sich auf der linken Seite um den Summenterm der 2. binomische Formel, also muss das Produkt (a-b)(a-b) heißen, bzw. kurz (a-b)².
Ebenso ist 64x² - 48xy + 9y² der Summenterm von (8x-3y)², denn (8x-3y)² = (8x)² + 2·8x·3y + (3y)² = 64x² + 48xy + 9y². Du musst also die 2. binomische Formel "rückwärts" anwenden.
Erinnerung: a² - b² = (a+b)(a-b) Hier handelt es sich auf der linken Seite um den Summenterm der 3. binomische Formel, also muss das Produkt (a+b)(a-b) heißen.
Ebenso ist 4x² - 121y² der Summenterm von (2x+11y)(2x-11y), denn (2x+11y)(2x-11y) =(2x)² - (11y)² = 4x² - 121y². Du musst also die 3. binomische Formel "rückwärts" anwenden.
Übung
Übung 10
Löse die nachfolgenden LearningApps.
Übung 11
Löse auf der Seite realmath so viele Aufgaben, dass du die 300-Punkte Marke knackst.
Sortiere die Summanden bzw. Subtrahenden so, dass du die 1., 2. oder 3. binomische Formel erkennen kannst: 4a²+9b²-12ab=4a²-12ab+9b² Jetzt hat der Term die Struktur der 2. binomischen Formel und du kannst faktorisieren: 4a²-12ab+9b²=(2a-3b)². Sortiere die übrigen Terme ebenfalls vor dem Faktorisieren.
Klammere zunächst (-1) aus, um vor den Quadratzahlen das passende Vorzeichen zu erzeugen:
-16z²+40yz-25y²=-(16z²-40yz+25y²)=-(......)²
Bei den Termen von Nr. 7 handelt es sich immer um die 3. binomische Formel, die angewendet werden muss. Hier ist die Strukur des Terms immer a² - b² und es gilt a² - b² = (a+b)(a-b).
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.